MATH
Midterm2Solns

# Midterm2Solns - Math 310 Section 3.4 Fall 2010 Midterm 2...

• Notes
• 5

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 310 - Section 3.4 Fall, 2010 Midterm 2 r-o'blem 0mm Your Score! 1 10 ' .2: 15 g :3: 15 4 10 15' By Signing below I certify that I am striving to adhere to the. principles of acadeni'xic tmth and inﬁegriiy heid by Michigan State University: and S‘éit forth in the: Spartan Life Student Handﬁmok. Signature: Maﬁa 310 — Section 3. F‘rﬂlg 2010 B-ﬁdterm 2 1. E10 ptsi; Comﬂete the deﬁnition 01 the term in-bold: A ring is a 110116:I1pt§-' Set 1? equipped with We operationsg 4:» and that Sgtisfy the. foiiowing axiums for all a. b: a E, R: Lwaﬂpéﬂ _ (in azi-"iaé—li; 2, m1 in-L“) "a {a “’3”; 1 MM m (awe: .: ‘ an: . 3.. as. 53%} b a“ I 3* ﬁ(b+ﬁ) x: g i3 33 6i C L“? § €13? ("JR 6a 4 63K * W W a" WM" mag , . K _ ‘ ‘ . W ML Mfg} (JUNE my 11W- a 9me MR ((g A)“; 2 ac ? be 2. ptb‘é Dufinc‘. :31 MW ackii‘sien and lxmitipﬁcaﬂon on Q by ‘r‘ 2 9' + 5 + l and T 67> 5: 2 725 + ‘r + :3. \$9170er that the Distributive Laws hold. for Q3 with those. operations L€.7% (xxég‘jic' 6Q ' “W b (ii—7:9} :2 dﬂﬁgih -% z: + E) €{55'i‘ﬁ‘1’g} "3‘ “F” Elbmﬂ} m5 4&9 mg; : (aw- ca #2) 63" (m1 "F ‘3) Gib-M*Eﬁfﬁii'm‘m“i? ﬂak (ﬁgﬁﬁéﬁ "3- {dm—bﬂwﬂﬂﬁ "3(61‘fbﬂ3a, Mai-EM} '91.; . a; (gag: .59 E25}; :(_5§<; «é-aL-mjﬁgﬁm + hm") “r— {Lﬁ‘fﬂuﬂlﬁ é~{\$~m-i—b M1} ‘5» iii. {‘0} Does Q witi.1_ the. 0pcmtim1s above haw: a {faultiplicative identity? 131mm your answer is correct. U ‘ﬂ‘h wnJHi¥i§7gfLsé§iﬁ ’EﬁiéN'EW-‘ﬁi‘f f ROME V‘ig 5% (53% C) '4‘ CH) + a +3 53L 0am a: {21%. "imam m «5a,. Brim}: 31.8 — Section 3. Fall, Z3010 Midterm 2 1:3. [15 pm] Which of the ﬁnlluwing are subrings of MEUJRJE’ Which ones have an identity? Prove. your ‘(lﬂfriW'Gl'S {UK-B COY'I'ECK \ ‘ ‘ ,. ‘O r (a) A}? matrices; of the Ionzn ( x U U > Wlth 7' t: a r" {635" m '5) wag" \ M 'H x “’éxszji) "” a 5 "5 m Misﬁt“ “Hm WEN”? Em") hf; ng'ii'iffimf'fﬂ, {a} an ((3 §> 1 (a {:7 \J E} R “gilt Euwh Wa ﬁjyémﬁﬂf , a _. _ _ D ‘ ‘ v ix \ \ ‘ ‘ { g) W?“ {a WEN}? Efﬁmmﬂ g? “5’ M £3“ E} Mm? x a w '0‘". 535‘ 3: ‘9“): "pm M»; g 3M; a ax I ,}(§@) ((31.3? %{0€) ) With a, b E R. """"""""" “WEMWW ''''''' MTWWTH‘T‘M‘WW'MW > m. ML W 31W? 1”“ “9 WWW" MW Ii F) _ a: 41 L’ a; '61 «C ii "<1 _ R ‘.,__ r i u u ‘ , \ ( y ﬂ ‘5 E) 3‘ §“ir?5ﬁ” (Cl-1 52;} £49,”; 3} E: (:ﬂ‘} m (:33; r‘“ (a w w? i} a») =3: (b) A1} Hiatricea of the form b5 it 32b {2%, H E}! 3’3 HM i“) R 5‘ Ergn‘ “ “‘ “‘ ~ A. «(it «w 6» E} iié‘i‘gwl i) 3)) “ion E Eric: anﬁgiwgﬂ / a {3 \ mmmmmmmm MWMMWM_W WWWWWWW _ mm with a. E : : r I “1 § a {31) T3133; swbﬁwﬁ Ag) 5" ihvf'ﬁ‘ékfl’kﬂhffvi re a. ‘ j? G" W Kai—i} : .9; a ‘ 1‘ ‘ . I {E ' {19% 'ﬁ £224; a)» ﬂﬂt’ﬁn a? (5533‘ beiwga: paying, ((1) AR mini"in of the form \ {a 0. mm J “M (mwm 5‘: “ﬁx (a :1 It}? {3:} 3T 11w.ku ﬁx}; m3? {3 a gwﬁwfﬂgu (a g.“ {3 5i 0 " 4. {M} pm} Lei. R be a. ring and a E R. 191543111119 that u ,i' 052, and film a. is not: a zero divisor. Prove ﬂiat Whmilevc‘il‘ (L?) r (u; in R, then b m c. I ﬁ'v‘fz‘wﬁ ‘37 333’ “1% Q“ :3 w? a gm ﬁfﬁjéﬂ “ELM «cab Mags; 3: £133: Em Wﬁﬁg 2%) {dig-mg} “35%” {a Mag“. Math 3110 ~ Sectitm 23. Fail, 2010 i\-€Iidterm 2 5. pts.] (a) Let f : R —+ S‘ be a humoxxmrphism of rings. if v" is 21: zero (Ii'iViSOI' in R.‘ is f a zero divisor in S"? Prove you}? answer is mired. ML Iﬁji'éﬁﬁliﬁi” j JLa‘rwé lax? 53‘) 3' {Jr [email protected] ilk-3f au- {14% a £32m dig/{W in bug“. 110 E5 mm“ m gerwﬁvﬁw {A (3‘)) Let f : H M; S be an iSOlIM‘H‘phiSII‘: of ring& If 7" is; a zero divisor in R. is ﬁr} a zero divisor in S? Provo. your answer is C(H‘T‘t‘l‘ib. . . - ,5 m K‘ i; a n: {Sim-Um" I‘m “‘5” {f‘jﬁﬁg‘ W 5&1” Siam. é} Eﬁéﬁdiw QM} ﬁg) 2’ {35, #1 “ME mava a}; M £0”) HW) ":1 H?“ W "9 (0M “:2 Os; 3:3 41?} g; {9rd} d‘tv'éjw En- 5. [1'5 ptsj Prove-2 that. the rings 2724 and 23 >< Z23 are not isomorphic. I 5V??35L : 2%? W) g2 5 Es: WW" “"4" ﬁmw?% Em ' "Tva 3‘? ‘Tkew m EE‘EﬂE a; [3% J CAE EJ’HWA. :3 j w Risa 1? 531%) £sz + Mg {ﬁgmg kg. Ham m «‘e Eva Engaw, t (_ mg, :43“) Ma W 595‘ '§}czw’t}>jnijm QKF}‘%~§, :1 L F [Dagny # Math .310 — Section 3., 53,11: ZUIU Midﬁerm f2. 7. [10 Prove the: fuliowing theorem: If R is an. il‘ltt-zgral (1031mm and fit} and 54,13) are. nonzero gmlynouﬂais in than d(’._(](f{i2f) : (i{,:g(f{;r;)) + [Zamgfﬂy N- :2 \ 7‘ P I I. {:5}? WE. I; Ch + Gin GE; ’51 ‘ "’ “i” an ) CRY“ \$ Uri“ 5M be -x~ bi {\4 'f b; 4:1 i- W -% 1% 5g ’5‘ I gym Twig; " NH“: 71%, "1 qt» b‘ﬁ + (GR-1b; 4” qt billy: ‘5‘ “" 'i“ ("in 5m) it 313% R S: 6m r3}?er 610M“, 0% bmyrog‘, is f}'}‘I’lr~i J’ lacuna CG-a'é:Rt/fm+ O‘g '€(“}fi’d} [\J 5% hm 2 KL Cbﬁ'm’f'ﬁ‘cfén+ Vii, '1 W 8. [11} 33%.] L01: f5}:‘).h,(:r:} wlilerE} F is a ﬁeld, anti ﬂat) and y(:!:) are relatix’eziy' prime. If hfn’tﬂf prmre that M37) and am I‘elaxiveiy prime. 5m WWM mm»: W, “m w Wm “my ‘Ac-Lmem 7 CM um + 3M V65} F M '3 4M 6 'FQ] 53., Em a W) m)” SUM-«J-i-W’rhj Hm M.) 1%. Wm ei‘fwffmj m m m) 1+ W m) if: TM MM (WW5) 4- «awmvwﬂ his ‘1“‘meg We; +23- %) 5M m mle WM". ...
View Full Document

• Summer '08
• KUMAR

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern