Lesson 31

# Matlab code snippet syms a n declares the symbolic

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATLAB Exponential: x[k]=bk u[k], |b|<1 MATLAB code snippet » syms b n % declares the symbolic variables » x= b^n; » X=ztrans(x); » X z/b/(z/b­1) Result: X(z)=(z/b) / ((z/b)­1) = z / (z­b). Lesson 31 MATLAB Sinusoid x[k] = sin(ak) u[k]. MATLAB code snippet » syms a n % declares the symbolic variables » x=sin(a*n); » X=ztrans(x); »X z*sin(a)/(z^2-2*z*cos(a)+1) X(z) = sin(a)z /(z2 – 2cos(a) +1), |b|<1 There are times when interpreting the outcome becomes challenging. Lesson 31 Properties See Table 5.2 Property Time-series z-transform Scaling Additively αx[k] x1[k]+x2[k] αX(z) X1(z)+X2(z) Linearity αx1[k]+βx2[k] αX1(z)+βX2(z) Shift (Delay) Reversal Complex Modulation Complex Multiply Ramping Reciprocal Decay others ………………. x[k–1] x[–k] ejθk x[k] wk x[k] kx[k] (1/k)x[k] z-1X(z)-x[0] X(1/z) X(e–jθz) X(z/w) -zdX(z)/dz Lesson 31 − ∫ X (ζ ) dζ ζ z-Transforms Initial valued theorem x[0]= X(z)|z→∞ Final valued theorem x[∞ ]= (z-1)X(z)|z→1 Provided that X(z) has all its poles interior to the unit circle with the exception being a single pole at z=1, Suppose x[k]=u[k], X(z)=z/(z-1), x[∞ ]= (z-1)X(z)|z→1= z|z→1=1 Lesson 31 z-Transforms Property Illustration Ramping kx[k] ⇔ -zdX(z)/dz Suppose x[k]=u[k] and X(z) = z/(z+1) Then kx[k] ⇔ -zdX(z)/dz = z d 1 z z z − 1 = −z = − z − z − 1 ( z − 1) 2 ( z − 1) 2 dz Check » syms n a f F » f=n; F=ztrans(f); » 'F= ', pretty(F) F= z -------2 Lesson 31 (z - 1) z-Transforms Property Illustration Time scaling x[k]=aku[k] x[Nk] ⇔ X(z)=z/(z-a) ⇔ X(zN) y[k]=x[k/2] ⇔ z2/(z2+a) = 1/(1-az-2) y[k]=1+az-2+a2z-4+… Lesson 31 z-Transforms How can the z-transform be used to study linear discrete-time signals and systems. Reconsider discrete-time system previously studied. Lesson 31 z-Transforms Author’s example using MATLAB extensions (Lesson 29). y [k + 2] − 5 y [k + 1] − 6 y [k ] = 3 x[k + 1] + 5 x [k ] y [ −1] = 11/ 6; y [ −2] = 37 / 36; x[k ] = (2)−k u[k ] = (1/ 2)k u[k ] Perform a z-transform of the difference equation. Shift (Delay) Theorem: x[k–1] ⇔ z-1X(z)-x[0] ( )( Y...
View Full Document

## This note was uploaded on 10/29/2013 for the course EEL 3112 taught by Professor Harris during the Spring '07 term at University of Florida.

Ask a homework question - tutors are online