{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

me351_lec04

A four bar linkage th2ang2 th3ang3 th4ang4

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ; if norm(delta,1) < err theta=[th3;th4]; return; else k=k+1; end end if k>=maxit fail=1; % Newton’s method fails return; end %=================================================== function coef=velocity(lnk, ang) % % Compute influence coefficients for velocity % analysis of a four bar linkage % th2=ang(2); th3=ang(3); th4=ang(4); rhs=[lnk(2)*sin(th2);-lnk(2)*cos(th2)]; coef=Jacob(lnk, th3, th4)\rhs; 3 %==================================================== function F=loop(lnk, ang); % computes vector components of the loop R2+R3+R4-R1=0 % returns column vector th1=ang(1); th2=ang(2); th3=ang(3); th4=ang(4); F=[lnk(2)*cos(th2)+lnk(3)*cos(th3)+lnk(4)*cos(th4)-cos(th1)*lnk(1); lnk(2)*sin(th2)+lnk(3)*sin(th3)+lnk(4)*sin(th4)-sin(th1)*lnk(1)]; %==================================================== function J=Jacob(lnk, th3, th4) J=[-lnk(3)*sin(th3), -lnk(4)*sin(th4); lnk(3)*cos(th3), lnk(4)*cos(th4)]; Let’s apply this program to the linkage given in Prob. 3.10 (p. 197) of the text. Initially, we focus on analysis of the four...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online