math294_hw6fa06

# math294_hw6fa06 - 52 16 Yen may be able te ﬁnd the...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 52 16. Yen may be able te ﬁnd the eelntiene by educated gueeeing. Here is the systematic eppreeeh: we ﬁret ﬁnd all vectere :E that are erthegenei te 171., ﬁg, and '33, then we identify the unit vectere eineng thein. Finding the vectere if with :if - "'1 = :E * {£2 = f - i323 : 0 eineunte te eelving the system (we can emit all the ceefﬁciente 1:; t ' H —f The eelntiene ere ef the ferin :c = = :53 -f 134 t Since “if” = 2|t|, we have 3. unit 1eecter if t = a: er t = —-%. Thus there are twe peeeihle eheicee fer ‘54: genel, but tllﬂy are net unit vectere: 26. The twe given vectere spanning the enhepece ere erthe the euhepece, we diwde heth have length 7. Te ebtein en erthenerinel heeie £1,112 ef by 7: 2 3 31:; 3 ,e;:% #6 6 2 49 New we can use Feet 5.1.5,r with 1i," 2 49 49 2 3 1i! preij = (“11.1 - f)ﬁ] + (“l-£2 * f)ﬁ2 = 11 3 “A *6 = 39 6 2 64 28. Since the three given vectere in the subspace ere erthegenel, we have the erthenerinel basis 1 1 1 e 1 1 e 1 1 i. _ l —1 “1:5 1 rug—i _1 13F2 F1 1 —1 1 New we can nee Feet 5 1 5, with if = El prejvzif = (nil - f)ﬂ'1 + (112 * ﬂﬁg + (1—53 5W3 = 3 l 1 4 #1 —1 -.L .. .. - _ U _ ”2_[u1'ﬁ2}E1 1 O H ——- +_. —— _. _. _‘ __ = 2 {I112 H t’s-(“rﬂelﬂl 7'5 1 U In Exercises 15—28, we will use the results ef Exercises 1—14 (nete. that Exercise A1, where A: = 1, . . . , 14, gives the QR fscterizeticn cf Exercise (k: + 14)). We can set Q = [11' 1 .. . Em]; the entries cf R are T11 = "‘51" T22 = W?“ = “‘52 — (1-51 *ﬁﬂiﬁlli r33 = “173+” = “173 r (131 @9111 — (E2 ' 53%“ n}.- = ii} #13}, where r' «C j. 4.....- 1 72' U __1._ vi 0 34. rref(r=1)=[1 D —l _2] 0 1 2 3 1 2 . . _. —2 _. '—3 A beers cf ker(A) is 111 = 1 , v2 = O 0 1 We apply the Grain-Schmidt precess and ebtain l 11' — 1 s — 1 ‘2 1 — Tell: 1 _ 75 1 U 2 —u-J,_ —: -I- -I- -I- —- _. __F vi __, ve—{'ﬂl-v2}ﬂl _ 1 1 “2 _ H132 _ IIﬁE-{ﬁrﬁs “Ell _ :30 —4 513 28. Write L(:i:') = ALE; by Deﬁnitien 5.3.1, A is an erthogenal ﬂ )5: in matrix, segiat 141114;}... by Fact 5.3.7. New L(ﬁ) - LEE) = (At—f) ' (A15) = (Aﬁ)TAtEi = ﬁTA Aw = an Inn: 2 e at = 17 * iii, as claimed. Note that we have used Facts 5.3.6 and 5.3.9a. 1 0 32. a. Ne! As a ceunterexaniple. censider A : U 1 (see Exercise 30). {J 0 I). Yes! Mere generally, if A and B are n X n matrices such that BA 2 I“. then AB = I”, by Fact 2.4.9c. 1 1 s s 75 7e 36. Let the third celunln be the cress precinct ef the first twe: A 2 ﬁ: — 12 7% 1 ﬂ _ 4 3 Is There is anether selntien1 with the signs in the last cehnnn reversed. R 4‘2. a. Snppese we are prejecting ente a subspace W ef IR”. Since .437? is in “Bairearly. the erthegenal prejectien ef ALF ente IV is just .45? itself: A(A:r) = ALE, er A :r : Arr. Since this eeuatien helds fer all :ir', we have A2 : A. b. A = QQT. fer seine matrix Q with erthenerinal cehnnns 1T 1 , . .'.‘, EMF}; Nete that QT :2 1.”, since the ijth entry ef QTQ is 11‘. - it... Then A2 : )QIQQ = Q(Q Q)Q = (21....0'1" = QC.)T = A. 60. Using Fact 4.3.2, we find the matrix scan—- Czar-It: GHQ: was: ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 3

math294_hw6fa06 - 52 16 Yen may be able te ﬁnd the...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online