{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Final Exam Solution 2011

# Final Exam Solution 2011 - Final Exam COSC 6342 Machine...

This preview shows pages 1–3. Sign up to view the full content.

1 Final Exam COSC 6342 Machine Learning May 12, 2011 Version B Your Name: Your Student id: Problem 1 [8]: Ensembles Problem 2 [11]: Support Vector Machines Problem 3 [3]: Belief Networks Problem 4 [6]: Kernels Problem 5 [12]: Reinforcement Learning Problem 6 [7]: DBSCAN/K-Means Problem 7 [13]: All kind of Questions Problem 8 [5]: Comparing Classifiers Problem 9 [10]: Machine Learning in General   : Grade: The exam is “open books and notes ” and y ou have 115 minutes to complete the exam. The exam will count about 33% towards the course grade.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 1) Ensemble Methods [8] a) One key problem of ensemble methods is to obtain diverse ensembles; what are the characteristics of a “diverse ensemble”? [2] The members of the ensemble make different kind of errors. b) What is the key idea of boosting? How does the boosting approach encourage the creating of diverse ensemble [3] Boosting uses weighted sampling and increases weights of examples that were misclassified and decreases the weights of examples that were classified correctly, encouraging the generation of classifiers which classify examples which have been mostly misclassified in the past leading to the creation of ensembles which make different kind of errors. c) The AdaBoost algorithm restarts if the accuracy of classifiers drops below 50%. Why? [3] Using ensembles whose base classifiers have a below 50% accuracy leads to a drop in accuracy: the ensemble classifier performs worse than the base classifiers themselves, and the drop is higher if the base classifiers make different kind of errors. 2 ) Support Vector Machines [11] a) Support vector machines maximize the width of the margin which separates the examples of 2 classes. What advantage does a classifier with a wide margin have over a classifier that has a much smaller margin? [2] If the amount of noise with respect to an example is less than half of the margin of the SVM classifier, the example will always be classified correctly; therefore, having larger margins makes classifiers less sensitive to noise. b) Non-linear support vector machine which use kernels which map a dataset into a higher dimensional space are quite popular. What advantages you see in using non-linear support vector machine over linear support vector machines? [3] There is a higher probability to find a hyperplane in a higher dimensional space which linearly separates the example of the two classes as there are much more
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern