151 Exam III A Fall 07

# 151 Exam III A Fall 07 - rrJFL MArHlsl EXAM IIIA Part L...

This preview shows pages 1–4. Sign up to view the full content.

rrJFL MArH lsl EXAM IIIA Part L Name Mrs. Bonny Tighe 2.9 -3.7 60 points Section Fnru30/07 1. State and use The Mean Value Theorem and find all numbers c that satisfu the conclusion. .f(x) = x + sin2x on the inlervdl 10,2ft1 ,' ur, r fq#*; ;'''il:* #j;;:.x'r'!"ft ' tr r\&- 9,." u "d ''\ - I -- I - t u:s'>-w ,-+ I tr") : o+o 'o -l)t-vl= ' 'J"r+< -- o +t lror -o \r so 1g ,34. ,q! ,11, ru '' , 4r 2 t-& t-t V+,+ g u 4tn,ttt 2. Determine whether each of the following functions is always increasing, always decreasing or some of each. EXPLAIN YOUR ANSWERS lDo"\r'a.ri- k> 4'tx) - U qg *\\ r -{ | a) f(x)=v7 +3xn +2x'-3 ? xv e t+36Y' \K€>c^r-!ti- h'(*) -- X-r d) k(x) e-" -4 an'r)") -' > ux- \K'r>.M? J \- - -+-cl<a-a.p, oW Ao uqiA ^b*f ^ibtu Y-'U\

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
*o W"t /1^^)'t br.- s,o&Jr.n- O"-'1- C,,r1 lb t v A '- )x3lY L ,Y;:ffi Y:ilJ.,ffi #;:':T#:T:ff f :1#1,:?","2,^.,**wx * l- lJae a €-r(.^.Lfib-' \4-'- >- SL;,-> 'a-ar )-d"v.71itw-t 9 S-*^fP'k '+^. .^', a'* J E-'tL"'*"-'+ -D- -r.'.i h {T t1*.4- n,,'.^,],l- b.- o- a lor\$u'h "-*= ;.^-, s* fut d'(cJ -'r> U /itvl - C uL+3 *'o ru4-,-Ltr Gr r c'^'l-&'J'^' E] -h-r* c-a- v'-'tt b1 5 c"r--lr'r*; .'. c-Va-c*Ua ct"^t M'"0 ftt,.-46\
4. Find the absolute maximum and minimum values of {-t '- 6r,\ - a) IE),-="."-" on [-2,2] {r;) "tv't,.J.-t^"^r *]il.* -5 b) f(x)= **J+-r [0,4] tr4) "(a) ' 4to) " > [r"t --x X't") -" , ,-1. t \ I u r"tr-y)'-L-, ) \->-.o z\q_y

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 04/07/2008 for the course MATH 151 taught by Professor Tighe during the Fall '08 term at UMBC.

### Page1 / 7

151 Exam III A Fall 07 - rrJFL MArHlsl EXAM IIIA Part L...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online