CHM345_HW7_13

# Nb in283 x0 out283 2 2 for 1 x so 1 printed

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ions Exp 12 x ΩΜ Exp 12 x ^2 ΩΜ 0 && Ω Μ 0 Out[280]= 2ΜΩ Printed by Wolfram Mathematica Student Edition 2 12 x ^2 0 2 , CHM345_HW7_13.nb In[283]:= Σx,0 Out[283]= 2ΜΩ ΜΩ 2 For Ψ1 x : so Ν 1 Printed by Wolfram Mathematica Student Edition 5 6 CHM345_HW7_13.nb 2 1 In[277]:= 2 Π1 14 4 ΜΩ Integrate HermiteH Ν, ΩΜ HermiteH Ν, x x, , ΩΜ 12 x ΩΜ Exp ΩΜ , Assumptions x ^2 ΩΜ 12 x 12 Exp 0 && Ω Μ 2 12 x ^2 2 , 0 2 1 2 Π1 14 4 ΜΩ Integrate HermiteH Ν, x2 x, Out[277]= ΩΜ HermiteH Ν, , ΩΜ 12 x ΩΜ , Assumptions Exp 12 x ΩΜ Exp 12 x ^2 ΩΜ 0 && Ω Μ 2 12 x ^2 2 , 0 0 Out[278]= 4ΜΩ In[284]:= Out[284]= Σx,1 4ΜΩ 1 2 ΜΩ Printed by Wolfram Exercise 3. Determine, through aMathematica Sintegration, Σpx for Ψ0 x and Ψ1 x . nalytical tudent Edition Show that your values satisfies the general relation CHM345_HW7_13.nb 7 Exercise 3. Determine, through analytical integration, Σpx for Ψ0 x and Ψ1 x . Show that your values satisfies the general relation Σpx ,Υ ΩΜ 12 1 Υ (3) 2 In[287]:= 2 1 Π1 14 4 ΜΩ Integrate HermiteH Ν, D ΩΜ HermiteH Ν, x, , ΩΜ 12 x ΩΜ Exp , Assumptions Exp ΩΜ x ^2 ΩΜ 12 x 12 2 12 x ^2 0 && Ω Μ 2 ,x , 0 2 1 Π1 14 4 ΜΩ Integrate HermiteH Ν, 2 DD Out[288]= ΩΜ 12 x Exp 12 x ^2 2 2 HermiteH Ν, x , x , x, Out[287]= ΩΜ , ΩΜ ΩΜ 12 x Exp , Assumptions ΩΜ 0 ΜΩ 2 Printed by Wolfram Mathematica Student Edition 12 x ^2 0 && Ω Μ 2 0 , 8 CHM345_HW7_13.nb In[291]:= ΣPx ,0 Out[291]= ΜΩ 2 ΜΩ 2 For Ψ1 x : so Ν 1 Printed by Wolfram Mathematica Student Edition CHM345_HW7_13.nb 2 1 In[289]:= 2 Π1 14 4 ΜΩ Integrate HermiteH Ν, ΩΜ HermiteH Ν, D x, , ΩΜ 12 x ΩΜ Exp , Assumptions Exp ΩΜ x ^2 ΩΜ 12 x 12 2 12 x ^2 0 && Ω Μ 2 ,x , 0 2 1 2 Π1 14 4 ΜΩ Integrate...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online