Lecture_03_Kinetics

# Orthogonality theorem y k 2 y 0 cf d 2 x dx 2 k 2

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 4C0 n 2j 1 (j 0, 1, ...) (2j 1)π 0 n 2j (j 1, 2, ...) (2j 1)2 π 2 Dt 4C0 1 (2j 1)π) ∴ C(x,t) (2j 1) sin L exp π j 0 L2 Solid State Ionics Research Lab. Seoul National University Kinetics Ex. 2: Initial and boundary conditions C1 Steady state distribution (i) C(0<x<L, 0) = 0 (ii) C(0, t) = C1 (iii) C(L, t) = C2 C2 0 0 -Prob. With solution C(x,t) Ansin nππ e L n 2 π 2 Dt L2 ; An L 2L nππ ( x) sin dx L 0 L Fourier integral turns trivial! ∵ condition #1, φ(x)=0. -A Trick transient sol’n C = V(x) + U(x,t) Steady state sol’n V( x) C1 C2 C1 x L -Transform of I.C & B.C. C(0, t) = C1 = C1 + U(0, t) ∴ U(0, t) = 0 C(L, t) = C2 = C2 + U(L, t) ∴ U(L, t) = 0 C(0<x<L, 0) = V(x) + U(x, 0) = 0 ∴ U(x, 0) = -V(x) Solid State Ionics Research Lab. Seoul National University Kinetics -Differential equation C 2C D 2 t x U 2U D 2 t x n x n2 2 Dt / L2 U An sin e L 2L n x An V ( x) sin dx L0 L -If C1=C2=Co ; V(x) = Co 2C L 2C 4Co n x An o cos o cosn 1 L n L 0 n (2 j 1) L ( j 0, 1, 2, ) C V U (2 j 1) 2 2 Dt 1 (2 j 1)x Co (2 j 1) sin L exp j 0 L2 4Co Solid State Ionics Research Lab. Seoul National University Kinetics Ex. 3: In-diffusion from constant surface concentration Co 4C C o 0 ( 2 j 1) 2 2 Dt 1 ( 2 j 1)x (2 j 1) sin L exp L2 reflection (C C) Co Transpose by Co 4C C Co o 0 Solid State Ionics Research Lab. ( 2 j 1) 2 2 Dt 1 ( 2 j 1)x (2 j 1) sin L exp L2 Seoul National University Kinetics 17.4 Some remarks on the sol’n & its variations 1) C( x, t ) s ymmetric about x C 0 x xL / 2 x 0 L/2 L L 2 J L/2 0 L : an impermeable wall 2 2) A new boundary condition c 2C D 2 t x (i) Jx=0-=0 (impermeable wall) (ii) c(L,t) = 0 (iii) c(0<x<L...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online