Problem Set 4 Solution

# Problem Set 4 Solution

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ȹ π Ⱥ 2µ 2 ȹ π Ⱥ 1/ 4 Ⱥȹ 2α ȹ Ⱥ Ⱥ 2 k 2 Ⱥ ȹ α ȹ = Ⱥȹ x Ⱥ ȹ ȹ e −α x / 2 ȹ 1 − α x 2 + Ⱥ ȹ 2µ Ⱥ 2 Ⱥ ȹ π Ⱥ Ⱥ Ⱥ ( ) ( ) Ⱥȹ 2α ȹ Ⱥ = Ⱥȹ ȹ 1 − α x 2 Ⱥ ȹ 2µ Ⱥ Ⱥ ( ) Ⱥ k 2 Ⱥ x Ⱥ ψ 0 ( x ) . 2 Ⱥ Ⱥ + Using the definition of α, € Ⱥȹ 2α ȹ Ⱥ ˆ H ψ 0 ( x ) = Ⱥȹ ȹ 1 − α x 2 Ⱥ ȹ 2µ Ⱥ Ⱥ Ⱥ ȹ 2 ȹ ȹ µ k ȹ1 / 2 Ⱥ = Ⱥ ȹ ȹ ȹ 2 ȹ − Ⱥ ȹ 2µ Ⱥ ȹ Ⱥ Ⱥ 1/ 2 Ⱥ Ⱥ 1 ȹ k ȹ k = Ⱥ ȹ ȹ − 2 ȹ µ Ⱥ 2 Ⱥ Ⱥ ( = ) + Ⱥ k 2 Ⱥ x Ⱥ ψ 0 ( x ) 2 Ⱥ Ⱥ ȹ 2 ȹ ȹ µ k ȹ Ⱥ k 2 Ⱥ x Ⱥ ψ 0 ( x ) ȹ ȹ ȹ 2 ȹ x 2 + 2 Ⱥ ȹ 2µ Ⱥ ȹ Ⱥ Ⱥ Ⱥ k 2 Ⱥ x2 + x Ⱥ ψ 0 ( x ) 2 Ⱥ Ⱥ 1/ 2 1 ȹ k ȹ ȹ ȹ ψ 0 ( x ) 2 ȹ µ Ⱥ 1/ 2 1 h ȹ k ȹ ˆ H ψ 0 ( x) = ȹ ȹ ψ 0 ( x ) . 2 2 π ȹ µ Ⱥ Next, the definition of the harmonic frequency can be used, € ν0 = 1/ 2 1 ȹ k ȹ ȹ ȹ . 2π ȹ µ Ⱥ Substituting, € 1/ 2 1 h ȹ k ȹ ˆ H ψ 0 ( x) = ȹ ȹ ψ 0 ( x ) , 2 2 π ȹ µ Ⱥ 1 ˆ or H ψ 0 ( x ) = hν 0 ψ 0 ( x ) . 2 Thus, we see that the function ψ 0 ( x ) is an eigenfunction of the Schrödinger equation for the harmonic oscillator. ˆ Since H ψ 0 ( x ) = E0...
View Full Document

## This document was uploaded on 12/05/2013.

Ask a homework question - tutors are online