Problem Set 1 Solution

# 2 sin 2 k 2 cos 1 cos 2 2

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 20 CHAPTER 1 ! a \$ er % !! & r# 2 r ! " ! ! ! % & k # 2 cos # ' #! sin # & k !1 ' cos # " # 2 ! ( ) # 2 sin 2 # ! ! % & k *# 2 cos # ' ' !1 ' cos # " # 2 + 2 !1 ' cos # " * + , ( ) 1 & cos 2 # ! % & k# 2 * 2 cos # ' ' 1+ 2 !1 ' cos # " + * , 3! % & k# 2 !1 ' cos # " 2 (9) or, 3 v2 4k (10) 3 v 2 sin # 4 k 1 ' cos # (11) ! a \$ er " 2 ' ! a \$ e# " 2 (12) a \$ er % & In a similar way, we find a \$ e# % & From (10) and (11), we have a% or, 3 v2 4k MATRICES, VECTORS, AND VECTOR CALCULUS a% 1-27. Since 1-28. 2 1 ' cos # (13) 21 # grad ! ln r " \$ % ! ln r " e i #x r . ! v . r " % ! r \$i r " v i& ! r \$ v " r (1) where we have Therefore, r\$ x2 d d \$ iv / r . ! v . r " 0 % dt / ! r \$ r " v & ! r %" ri 0 dt (2) % !r \$ r" a ' 2 !r \$ v" v & !r \$ v" v & ! v \$ v" r & !r \$ a" r # 1x ! ln r " \$ ' ri \$ 2 % r 2 a#x!i r \$ v " v & rr v 2 % xia ' ! Thus, " x \$ i2 d 2 r \$ v" v & r r \$ a ' v2 / r . ! v . r "0 % r a ' ! dt ! so that (1) i grad ! ln r " \$ " (3) (2) ' 1& xe 2 (% i i+ )i * r (4) r r2 (5) or, grad ! ln r " \$ 1-29. Let r 2 \$ 9 describe the surface S1 and x , y , z 2 \$ 1 describe the surface S2 . The angle between S1 and S2 at the point (2,–2,1) is the angle between the normals to these surfaces at the ! " r2 1-29. Let r 2 \$ 9 describe the surface S1 and x , y , z 2 \$ 1 describe the surface S2 . The angle between S1 and S2 at the point (2,–2,1) is the angle between the normals to these surfaces at the point. The normal to S1 is ! ! " grad ! S1 " \$ grad r 2 . 9 \$ grad x 2 , y 2 , z 2 . 9 22 In S2 , the normal is: CHAPTER 1 \$ ! 2xe1 , 2 ye2 , 2ze3 " (1) x \$ 2 , y \$ 2 , z \$1 \$ 4grad4e21 " \$ grad ! S2 " e1 . ! S , 2e3 cos # % grad ! S1 " grad ! S2 " ! or, " " grad ! S2 "e\$ & 4e2 ' 2ey",!z 21 . 1 2 ' 2e3 " ! 4 1 grad x , 3 \$ e ' e % 66 \$ ! e1 , e2 , 2ze3 " x \$ 2 , y \$.2 , z \$1 (3) (2) \$ e1 , e2 , 2e3 4 cos # % 66...
View Full Document

## This note was uploaded on 12/14/2013 for the course PHYS 301 taught by Professor Argryes during the Fall '13 term at University of Cincinnati.

Ask a homework question - tutors are online