Y 12 y 2 14 y x 2e sin d 16 y y x x2 1 dx 2x 18 y 19

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 8. y 19. y se ds 20. y 21. y ln x dx x 22. y 23. y 24. y ln x dx x3 y x arctan x dx 1 x2 2 49. y 51. y 0 1 dx x sx 9 1 53. y y 9. y 11. y 13. y xe 15. y 17. 25. 27. 29. 31. s2 x 1 0 1 y 35. y dx x 6 dx 26. 1 dx sx 3 0 1 3 2 33 y 37. 5s dx ln x dx x2 0 33. x2 9 1 y x2 x2 y y dy 1 2 y y2 e 4 w dw 0 28. 1 dx x2 30. 1 dx x4 32. x 1 15 ex 1 1 e x 1 dx 1 0 0 6 1 0 y y 3 1 y 34. y y 38. y dx 2 2 2t e dx dz 3z x 2 dx 3 sx 9 dx s 2} s s s s 2 cos 2x dx 1 x2 1 50. y dx e 2x 52. y dx x sin x 54. y x 1 /2 0 s s s s s y 0 dy 1 0 x2 1 x 2 x 2x 3 dx 3 0 s s 2 e x dx x 1 x x6 s1 1 1 0 s dx ex dx sx s s s 55. The integral x2 1 4 9 |||| Use the Comparison Theorem to determine whether the integral is convergent or divergent. 4y 0 2 x x2 49–54 dx s1 1 s 9 1 (s x 1), use your calculator or computer to make a table of approximate values of x2t t...
View Full Document

Ask a homework question - tutors are online