This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: SIMPLIFIED EXPRESSIONS FOR Z—PROPAGA’I‘ING WAVES Assume Eg(:1;,y,z) : E($,y) (3—72
Hg(m, y, z) : H(J:, 6—73
Where from NIaXWCI].’s equations (“g” refers to guided wave) V X ES!) : ijwan, V X Hg : +jweEg Expanding these we have 8E? , 8H3 .
3y +7193; : ——jw,u,H$ 3y + ’yﬂy — jWEE‘T
8E3 . 8H3 ,
7E1,” + ax — +lijLHy —*y.[ a; —— am — jaieEy
5E1, 5E , 8H " (9H
— a: : e f]; y — a: : * EN
(9m 8y Jw'u 81 (9y 3%”: L which can be further manipulated to express the a: and y components in terms of the 2
components. We obtain H m _i [811; M M0132 _' 1'13 7 323 J (r 331
1 . J 2 2 . i .  r \ ﬂ '
Hy — Hz (7 8y I Jwe 83:) h k +7” 1 I ,—
E ﬂ 1 8E2. an; y _ 1’13 7 5y ELM 3:8 TM Waves (Hz 2 0) m [12 8y _ "y y
i 2102352
Hy— h2 82:
.1 7/ (3E;
by 2 *7
’ h) 3:0
E2
Hy : _l 8.
h? 6y NOTE: ZTM : Ear/Hy : —Ey/H$ = 7/wa : wave impedance 7E 77 = Z : «nu/e . Also,
H 2 (l/ZTM)2 X E (for the transverse components only). TE Waves (E2 2 0) ’7 (9H; 7 ’12 ’f
Hmzm—w m—w ,— E1: E1
112 33: h? (Mu J ‘1 ‘ 7 (3H; H 3 —.— y b? 8y
Ex 2 _i% QHZ [12 (3y ‘, jam. (9H;
b x — g h? 053 NOTE: ZTE I “ﬂy/Hm : Egg/Hy : jam/7 : wave impedance 7% n : Z 2 . Also for
the transverse components E : WZTEQ X H]. E Waves and H Waves in Cartesian Coordinates Consider a time—harmonic ﬁeld in a source—free homogeneous region. Let 82EZ
dz2 8sz :yzEz and 822 :vsz. (1) Then it is convenient to use EZ and H ,3 as generating functions to determine the other ﬁeld compo
nents as follows. Let hzzyz+to2pexyz+k2 (2) E Waves H Waves
wit: (‘0
Hx : ﬂog}; 88—? E2 2 0 (5) aZ = o Hy = (7) A more general ﬁeld can be expressed as the sum of an E wave and an H wave. Still more generality
is obtained by considering the ﬁeld to be the sum or integral of E and H waves having different
values of 7. Some of the solutions of (1) are: COShWZ): Sinh('YZ), 8W: 6—72 (8)
come), sinrszZ), eszZ’ [jazz (9) where y : jBZ.
If the ﬁeld does not satisfy (1), the Fourier transform may be applied to express the ﬁeld as
a spectrum of waves that do satisfy (1). Thus, the ﬁeld in a homogeneous source—free region is determined by EZ and Hg. However, uniqueness is spoiled by the possible existence of TEM waves
having EZ : 0 and HZ : 0. SIMPLIFIED EXPRESSIONS FOR X ~PROPAGATING WAVES Assume (“‘g” indicates a guided wave) where from Maxwell’s equations Expanding these we have anZ as), _ , 8Hz an}, _ _ __,_ _ _. Hx w _ _ z ' E ay dz 1°)“ By dz m x 8E _ 3H a—ﬂhl 2 w 103w, “523+sz : jCOSE}
3E de VEy+ a— : ijHz FYI—131+ T); — “JmEEz These can be further manipulated to express the z and )2 components in terms of the x components. We obtain
1 BHX 8E
Hy: ——< —ujon—JC—) TE and TM Fields Separable in the Cylindrical
Coordinate System The harmonic electromagnetic ﬁelds listed below satisfy Maxwell’s equations in a homogeneous
source~free region. TE Fields TM Fields
_ '00
EP = ij‘uqu’Z Ep : CR’cpz’ 1
Eq, : C jmyR’qnz E¢ : CERCD’Z’
EZ = 0 EZ : CBZRCDZ
Hp : CR’tDZ’ HP 2 Gig—FIRth
1 H4) : CERCD’Z’ Hq, = —j0)eCR’<1)Z
HZ = CBZRCDZ HZ = 0 C denotes an arbitrary constant. The time dependence 61"” is understood. R is a function of p only,
(I) is a function of q) only, and Z is a function of z only. Primes indicate differentiation with respect
to p, (I) or z. The functions satisfy the following differential equations: where and kp and h are constants. Note: R’ = kpjglkpp) ifR 2 Jm(kpp)
R’ = kpNMkpp) if R 2 Nmfkpp) : NmUcpp)
R’ = kagdpp) ifR : Hm(kpp) Some solutions of these differential equations are listed below. R(p) E Jm(ka) t 0050714)) Z(Z) : COSUSZZ) Mnkpp) sin(m¢) sin(Bzz)
Hmkpp) give em Wisp) e‘jm‘l 6‘th If [i : 0, the radial function is R(p) : pim. Note the deﬁnitions:
Jm() = Bessel function of order m : Neumann function of order m
Hm1 : mth order Hankel function of the 1st kind
Hm” ( : mth order Hankei function of the 2nd kind ...
View
Full Document
 Summer '10
 Ramprasad

Click to edit the document details