lecture_slides-TermStructure_Binomial_#1

Lecture_slides-TermStructure_Binomial#1

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (8) we obtain Zt = EQ t Bt t +s Zt +s Cj + B Bt +s j =t +1 j (9) Pricing using (9) ensures no-arbitrage – note that (6) is a special case of (9). 5 A Sample Short-Rate lattice 18.31% ¨ ¨¨ ¨ 13.18% 14.65% ¨¨ ¨ ¨ ¨ ¨¨ 9.49% 11.72% ¨ 10.55% ¨ ¨ ¨ ¨ ¨¨ ¨¨ ¨¨ ¨ ¨ ¨ 6.83% 9.38% ¨ 8.44% ¨ 7.59% ¨ ¨ ¨ ¨¨ ¨¨ ¨ ¨ ¨¨.75% ¨¨¨.08% ¨¨¨.47% ¨¨.92% 4 7.5% ¨ 6 6 5 ¨ ¨ ¨¨ ¨¨ ¨ ¨¨ ¨¨ ¨ ¨ ¨ ¨ ¨ 6% ¨ 5.4% ¨ 4.86% ¨ 4.37% ¨ 3.94% ¨ 3.54% ¨ ¨ ¨ ¨ ¨ t=0 t=1 t=2 t=3 t=4 t=5 The short-rate, r , grows by a factor of u = 1.25 or d = .9 in each period – not very realistic but more than sufficient for our purposes. 6 Pricing a ZCB that Matures at Time t=4 100 ¨ ¨¨ 89.51 ¨ 100 ¨ ¨¨ ¨ ¨ ¨¨92.22¨¨ 100 83.08 ¨ ¨ ¨ ¨¨ ¨ ¨¨ ¨¨ 79.27 ¨ 87.35 ¨ 94.27 ¨ 100 ¨ ¨ ¨ ¨ ¨¨ ¨¨ ¨¨ ¨¨ ¨ 84.43¨¨ 90.64¨¨ 95.81¨¨ 100 77.22 ¨ t=0 t=1 e.g. 83.08 = t=2 1 1 + .0938 t=3 t=4 1 1 × 89.51 + × 92.22 . 2 2 Can compute the term-structure by pricing ZCB’s of every maturity and then backing out the spot-rates for those maturities - so s4 = 6.68% assuming per-period compounding, i.e., 77.22(1 + s4 )4 = 100. 7 Pricing a ZCB that Matures at Time t=4 100 ¨ ¨¨ 89.51 ¨ 100 ¨ ¨¨ ¨ ¨ ¨¨92.22¨¨ 100 83.08 ¨ ¨ ¨ ¨¨ ¨ ¨¨ ¨¨ 79.27 ¨ 87.35 ¨ 94.27 ¨ 100 ¨ ¨ ¨ ¨ ¨¨ ¨¨ ¨¨ ¨¨ ¨ 84.43¨¨ 90.64¨¨ 95.81¨¨ 100 77.22 ¨ t=0 t=1 t=2 t=3 t=4 1 2 3 4 Therefore can compute compute Z0 , Z0 , Z0 and Z0 – and then compute s1 , s2 , s3 and s4 to obtain the term-structure of interest rates at time t = 0. At t = 1 we will compute new ZCB prices and obtain a new term-structure – model for the short-rate, rt , therefore defines a model for the term-structure! 8 Financial Engineering & Risk Management Fixed Income Derivatives: Options on Bonds M. Haugh G. Iyengar Department of Industrial Engineering and Operations Research Columbia University Our Sample Short-Rate lattice 18.31% ¨ ¨ ¨¨ .18% 14.65% ¨ 13 ¨¨ ¨¨ ¨ ¨ 11.72% ¨ 10.55% ¨ 9.49% ¨ ¨ ¨ ¨ ¨¨ ¨¨ ¨ ¨ ¨ ¨ 9.38% ¨ 8.44% ¨ 7.59% ¨ 6.83% ¨ ¨¨ ¨ ¨¨ ¨¨ ¨ ¨ ¨¨.75% ¨¨ 6.08% ¨¨ 5.47% ¨¨¨.92% 7.5% ¨ 6 4 ¨ ¨ ¨ ¨¨ ¨¨ ¨ ¨ ¨ ¨ ¨¨ ¨ ¨ ¨ 5.4%¨¨ 4.86%¨¨ 4.37%¨¨ 3.94%¨¨ 3.54% 6% ¨ t=0 t=1 t=2 t=3 t=4 t=5 2 Pricing a ZCB that Matures at Time t=4 100 ¨ ¨¨ 89.51 ¨ 100 ¨ ¨¨ ¨ ¨¨92.22¨¨¨ 100 83.08 ¨ ¨ ¨ ¨¨ ¨ ¨¨ ¨¨ 79.27 ¨ 87.35 ¨ 94.27 ¨ 100 ¨ ¨¨ ¨ ¨¨ ¨¨ ¨¨84.43¨¨¨90.64¨¨¨95.81¨¨¨ 100 77.22 ¨ t=0 t=1 e.g. 83.08 = t=2 1 1 + .0938 t=3 t=4 1 1 × 89.51 + × 92.22 . 2 2 3 Pricing a European Call Option on the ZCB 0 1.56 2.97 ¨ t=0 ¨ ¨¨ ¨ ¨ ¨¨ ¨ ¨¨ 4.74 ¨ ¨ 3.35 ¨ ¨¨ ¨ ¨ t=1 e.g. 1.56 = ¨¨ 1 1 + .075 Strike = $84 Option Expiration at t = 2 4 Option Payoff = max 0, Z2,. − 84 Underlying ZCB Matures at t = 4 6.64 t=2 1 1 ×0 + × 3.35 . 2 2 4 Pricing an American Put Option on a ZCB Strike = $88 Expirati...
View Full Document

This note was uploaded on 01/09/2014 for the course FIN 347 taught by Professor Martinhaugh during the Fall '13 term at Bingham University.

Ask a homework question - tutors are online