Unformatted text preview: 3 respectively. Or, you can just use the “Bode” command in MATLAB. B ode Diagrams
Fr om: U( 1)
0 --- g2(s )
__ g1(s )
- 100 - 150
0 To: Y (1) Phas e (deg); Magnitude (dB) - 50 - 100 --- g2(s )
__ g1(s ) - 200 - 300
10-1 100 101 102 Frequenc y (rad/ s ec ) V. A process has the fo llowing transfer funct ion: g ( s = ) 4 + 1 (as )
(5 + 1 ( + 1 ) s ) s ) For the fo llowing values of the parameter a,
· a = 10
· a = 2
· a = 0. 5
· a = -1
Compute the responses for a stepchange o f magnitude 0.5 and plot in a single figure. What conclusio ns can you draw concerning the zero location? Is the locat ion of the po le corresponding to t 2 = 5 important? Solution: Note that the zero is located at: z = 1 / a Using the fo llowing mat lab mfile, TF=30; a=10; n=[2*a 2]; d=[conv([5 1],[1 1])]; g=tf(n,d); step(g,TF); hold on a=2; n=[4*a 4]; g=tf(n,d); step(g,TF); hold on a=0.5; n=[4*a 4]; g=tf(n,d); step(g,TF); hold on a=1; n=[4*a 4]; g=tf(n,d); step(g,TF); We can generate the fo llowing figure: 3.5 3...
View
Full Document
- Fall '08
- Hjortso,M
- funct ion, FPTD Linear, transfer funct ion, Alternat ive Linear, ive Linear model, inco ming stream.
-
Click to edit the document details