# calculus1 - The following is a list of formulae and...

• Notes
• nizhes
• 13

This preview shows page 1 - 3 out of 13 pages.

The following is a list of formulae and theorems of math 23 to help you to memorizethe materials and thus no proofs or examples are included. If a formula holds for both2D and 3D cases and the expressions are similar, we only state the 3D case.(1) Distance formula: given two pointsP= (x1, x2, x3), Q= (y1, y2, y3)R3, thenthe Euclidean distance ofpandQisd(P, Q) =|PQ|=(x1-y1)2+ (x2-y2)2+ (x3-y3)2.(2) Equation of spheres and description of balls:The equation of the sphere with center (a, b, c) and radiusris(x-a)2+ (y-b)2+ (z-c)2=r2orx2+y2+z2-2ax-2by-2cz+a2+b2+c2-r2= 0.Please see the later classification of quadric surfaces.The (closed) ball with centerP= (a, b, c) and radiusrisB(P, r) =Br(P) ={(x, y, z)R3|(x-a)2+ (y-b)2+ (z-c)2r2}.(3) Properties of vectors: given vectorsv=x, y, zandw=a, b, cwe haveThe length ofvis|v|=x2+y2+z2.v±w=x±a, y±b, z±c.Ifαis a scalar, thenαv=αx, αy, αz.vis the zero vector if and only ifx=y=z= 0.Ifv= 0, then the unit vector in the direction ofvis1|v|v.The standard basis vectorsi,j,khave componentsi=1,0,0 ,j=0,1,0 ,k=0,0,1 . We can writevas a linear combinationv=xi+yj+zk.(4) Products of vectors: given vectorsv=x, y, zandw=a, b, c, the dot productofvandwis the scalarv·w=xa+yb+zc.Properties of dot product:• |v|2=v·v.v·w=w·v.For scalarsα, βand vectorsv1, v2, wwe have(αv1+βv2)·w=αv1·w+βv2·w.Letθbe the angle betweenvandw. Thenv·w=|v||w|cosθ.For nonzero vectorsvandw, they are perpendicular if and only ifv·w= 0.The scalar projection ofwontoviscompvw=v·w|v|and the vector ofwontovisprojvw=v·w|v|v|v|=v·w|v|2v.1
The cross product of two 3D vectorsv=x, y, zandw=a, b, cis the vectorv×w= deti,j,kx,y,za,b,c= (yc-bz)i+ (za-xc)j+ (xb-za)k.Properties of dot product:v×w=-w×v.For scalarsα, βand vectorsv1, v2, wwe have(αv1+βv2)×w=αv1×w+βv2×w.Letθbe the angle betweenvandw. Then|v×w|=|v||w|sinθ.The vectorv×wis perpendicular to bothvandwand the triple (v, w, v×w)satisfy the right hand rule. Furthermore,|v×w|is the area of the parallelo-gram spanned byvandw.For nonzero vectorsvandw, they are parallel if and only ifv×w= 0.For vectorsu, v, wwe haveu·(v×w) = (u×v)·wandu×(v×w) = (u·w)v-(u·v)w.The volume of the parallelepiped spanned byu, v, wisV=|u·(v×w)|.(5) Lines: a lineLinR3is determined by a pointQ0= (x0, y0, z0) onLand a nonzerovectorv=a, b, cwhich is parallel toL. The vector equation isr=r0+tvwherer0=--→OQ0andtis a parameter. The parametric equation isx=x0+aty=y0+btz=z0+ctand the symmetric equation isx-x0a=y-y0b=z-z0cwhenabc= 0.

Course Hero member to access this document

Course Hero member to access this document

End of preview. Want to read all 13 pages?

Course Hero member to access this document

Term
Fall
Professor
YUKICH
Tags
Vector field, c Properties
• • • 