solutions for b

# 1 10 2 x10 2 x9 dierentiate this twice j

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: too is convergent for an arbitrary real number x. 5 Note ⋆ Jx = : Let’s duplicate (2b): 1 0!! 2 − 1 2!! 2 x2 + 2 x+ 1 4!! 1 2 x4 − 2 x3 − 6!! x4 + 8 ·7 6!! 2 x6 + 2 x5 + 1 2 x8 − 2 x7 − 8!! 1 10!! 2 x10 + ··· . 2 x9 + ··· , Diﬀerentiate this twice: J′ x = 2 − 2!! + 4 ·3 4 4!! 6 8 8!! 10 10!! and J ′′ x = − 2 ·1 2!! 2 4!! 2 x2 − 6 ·5 6!! 2 8!! 2 x6 − 10 ·9 10!! 2 x8 + 12 ·11 12!! 2 x10 − ···. J ′′ x can be written as follows: J ′′ x =− 1 2 0!! 2 + 3 4 2!! 2 x2 − 5 6 4!! 2 x4 + 7 8 6!! 2 x6 − 9 10 8!! 2 x8 + 11 12 10!! 2 x10 − ··· . 2 x10 + ··· . 2 x10 − ··· . Add up J x and J ′′ x : Jx J ′′ x = =− 1 0!! 2 1 2 0!! 2 − + 1 2!! 2 3 4 2!! x2 + 2 2 x− 1 4!! 2 5 6 4!! x4 − 4 2 x+ 1 6!! 2 7 8 6!! x6 + 6 2 x− 1 8!! 2 9 10 8!! x8 − 8 2 x+ 1 10!! 11 12 10!! + J x + J ′′ x = 1 2 0!! 2 − 1 4 2!! 2 x2 + 1 6 4!! 2 x4 − 6 1 8 6!! 2 x6 + 1 10 8!! 2 x8 − 1 12 10!! 2 x10 + ··· . Realize that x multipled to this exactly equals −J ′ x . Hence we obtain x J ′′ x + J′ x + xJ x =0 Bessel’s diﬀerential equation J x is called the Bessel function of the ﬁrst kind . [II] (30pts) Let ε be an arbitrary positive real number. Then the integral +∞ ( ∗) −1 ζs s=1+ε ds is convergent . Proof: Let = ζs fs f s is well-deﬁned over (i) f s > 0 over (ii) fs 1 + ε, 1 + ε, − 1. +∞ , +∞ , and the following (i) and (ii) hold: and is monotonically decreasing over 1 + ε, Hence the Integral Test is applicable. Now, we claim ∞ (iii) = 1. fn n=2 Indeed, ∞ fn...
View Full Document

## This note was uploaded on 01/12/2014 for the course MATH 116 taught by Professor Scholle,minho during the Fall '08 term at Kansas.

Ask a homework question - tutors are online