{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

solutions for quiz xxix

# solutions for quiz xxix - Math 116 CALCULUS II SOLUTION FOR...

This preview shows pages 1–6. Sign up to view the full content.

Math 116 CALCULUS II SOLUTION FOR QUIZ – XXIX (11/19) November 19 (Tue), 2013 Instructor: Yasuyuki Kachi Line #: 23590. [I] (10pts) Let J ( x ) be defned over the interval p − ∞ , + P . Assume J ( 0 ) = 1 and moreover that For an arbitrary positive integer J (2 1) ( 0 ) = 0, J (2 ) ( 0 ) = p 1 P p 2 1 P ! ! p 2 P ! ! . (1) J (1) ( 0 ) = 0, J (2) ( 0 ) = 1 !! 2 !! , J (3) ( 0 ) = 0, J (4) ( 0 ) = 3 !! 4 !! , J (5) ( 0 ) = 0, J (6) ( 0 ) = 5 !! 6 !! , J (7) ( 0 ) = 0, J (8) ( 0 ) = 7 !! 8 !! , · · · · · · 1 (2a) J ( x ) = s =0 p 1 P ± p 2 P !! ² 2 · x 2 . (2b) J ( x ) = 1 1 p 2 !! P 2 x 2 + 1 p 4 !! P 2 x 4 1 p 6 !! P 2 x 6 + 1 p 8 !! P 2 x 8 − ··· . 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
b Work for (2a), (2b) B : J ( x ) = J ( 0 ) + J (1) ( 0 ) 1 ! x + J (2) ( 0 ) 2 ! x 2 + J (3) ( 0 ) 3 ! x 3 + J (4) ( 0 ) 4 ! x 4 + J (5) ( 0 ) 5 ! x 5 + J (6) ( 0 ) 6 ! x 6 + J (7) ( 0 ) 7 ! x 7 + J (8) ( 0 ) 8 ! x 8 + J (9) ( 0 ) 9 ! x 9 + J (10) ( 0 ) 10 ! x 10 + ··· 1 !! 2 !! 3 !! 4 !! = 1 + 0 1 ! x + 2 ! x 2 + 0 3 ! x 3 + 4 ! x 4 5 !! 6 !! 7 !! 8 !! + 0 5 ! x 5 + 6 ! x 6 + 0 7 ! x 7 + 8 ! x 8 9 !! 10 !! + 0 9 ! x 9 + 10 ! x 10 + = 1 1 2 · 2 · 1 x 2 + 3 · 1 4 · 2 · 4 · 3 · 2 · 1 x 4 5 · 3 · 1 6 · 4 · 2 · 6 · 5 · 4 · 3 · 2 · 1 x 6 + 7 · 5 · 3 · 1 8 · 6 · 4 · 2 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 x 8 9 · 7 · 5 · 3 · 1 10 · 8 · 6 · 4 · 2 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 x 10 + 2
= 1 1 2 · 2 x 2 + 1 4 · 2 · 4 · 2 x 4 1 6 · 4 · 2 · 6 · 4 · 2 x 6 + 1 8 · 6 · 4 · 2 · 8 · 6 · 4 · 2 x 8 1 10 · 8 · 6 · 4 · 2 · 10 · 8 · 6 · 4 · 2 x 10 + ··· = 1 1 p 2 !! P 2 x 2 + 1 p 4 !! P 2 x 4 1 p 6 !! P 2 x 6 + 1 p 8 !! P 2 x 8 − ··· 1 = s =0 p 1 P ± p 2 P !! ² 2 x 2 . b Alternative Answers for (2a), (2b) B : Since ± p 2 P !! ² 2 = p ! P 2 · 2 2 , you may write your answers alternatively as 1 (2a) J ( x ) = s =0 p 1 P p ! P 2 · ± 1 2 ² 2 · x 2 . (2b) J ( x ) = 1 1 p 1! P 2 p x 2 P 2 + 1 p 2! P 2 p x 2 P 4 1 p 3! P 2 p x 2 P 6 + 1 p 4! P 2 p x 2 P 8 . 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
1 (3) The radius of convergence for s =0 p 1 P ± p 2 P !! ² 2 · x 2 is R = + . b Work B : Consider the series with variable u : 1 s =0 p 1 P ± p 2 P !! ² 2 · u . 1 Set a = p 1 P ± p 2 P !! ² 2 . Then 1 v v a v v = ± p 2 P !! ² 2 , 1 v v a +1 v v = ± p 2 + 2 P !! ² 2 . 1 ± p 2 P !! ² 2 = lim −→ v v a v v v v a +1 v v = lim 1 ± p 2 + 2 P !! ² 2 4
= lim −→ p 2 + 2 P !!

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 16

solutions for quiz xxix - Math 116 CALCULUS II SOLUTION FOR...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online