{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

extra credit hw viii

extra credit hw viii - Seat Math 116 CALCULUS II EXTRA...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Math 116 CALCULUS II EXTRA CREDIT HOMEWORK – VIII November 21 (Thu), 2013 Due date: December 5 (Thu), 2013 Seat # : Instructor: Yasuyuki Kachi Line #: 23590. ID # : Name : Problem 1. (0) Write out the following power series in an ‘honest’ form: I ( x ) = s n =0 p - 1 P n p 2 n P ! ! p 2 n - 1 P ! ! x n = 1 - 2 1 x + 4 · 2 3 · 1 x 2 - · · · · x 3 + · · · · · · x 4 - · · · · · · · · x 5 + ··· . 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
(1) Find the radius of convergence R for the above power series. R = . Work for (1). Set a n = p - 1 P n p 2 n P ! ! p 2 n - 1 P ! ! . Then v v a n v v = , v v a n +1 v v = . = R = lim n -→ v v a n v v v v a n +1 v v = lim n = lim n p Pp P p P = lim n = . 2
Background image of page 2
(2) Decide whether the infnite series obtained by substituting x = 1 into the above power series is convergent or divergent. b Answer B : s n =0 p - 1 P n p 2 n P ! ! p 2 n - 1 P ! ! = 1 - 2 1 + 4 · 2 3 · 1 - 6 · 4 · 2 5 · 3 · 1 + 8 · 6 · 4 · 2 7 · 5 · 3 · 1 - 10 · 8 · 6 · 4 · 2 9 · 7 · 5 · 3 · 1 + 12 · 10 · 8 · 6 · 4 · 2 11 · 9 · 7 · 5 · 3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 7

extra credit hw viii - Seat Math 116 CALCULUS II EXTRA...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online