{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}


ME2320SolTEST1Fall07 - Name ID — EB — 2B6 awn...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Name: ID' — EB. — 2B6? awn. TI-[ERMDDYNAMCS'I TEST Na. 1 1Themtmmatanklsprflsxmmdhyan'an&theptesmu'elsmeasumdbyamulufimd manumflterasshownmthcfigumWhegagemamfifmrmthemnklfm (3.2111, h3= {Hm -andh3_= [146311 Takethedensifieslofwaiar ul audmermt0be'1flDflkghn3, 35E! kgfm}, and 136W 5:315:13 Esfiectively.- (4 {KS} _.-1 In- MU'ZM @320 '5?“ hfioq’bw €13}: {000.35 #38 'fioifiigafi‘lm) ME2320. 1st Test 10 — 03 — 2007 2. Windmills slow the air and cause it to fill a larger channel as it passes through the blades. Consider a circular Windmill with a 7—m—diameter rotor in a 10 m/s wind on a day when the specific volume of the air is 0.8409 m3/kg. The wind speed behind the windmill is measured at 9 m/s. Determine the diameter of the wind channel downstream from the rotor and the power produced by this windmill. Assume the specific volume of air is constant (air is incompressible). (3 pts. ) WA, 3?va WE ”3&0: DLDAL A, human. 15' Teet' n} — ea — 2m? 3. Wetenepamlpedfiemalaketeasmragetankiflmebeveatereteeffl} Us while eeneuming 21:1 :4 kW ef'eleetrie. power Disregnnfling any fi-ietienn'l teee'ee' 1n the pipes and any clungee' III kinetic energy detennine {a} the everell effi+z_:ie'1n:},r er the Wmetfir ' unit eed{b)the-peesenre difl'ei‘eneebetweenfi'le inlet -amdtl1eexiteffi1e..pnmp {3 pt'e.) ...
View Full Document

{[ snackBarMessage ]}