{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

FM5002-HW12-5.2.12

# FM5002-HW12-5.2.12 - Financial Mathem atics 5002 Hom ework...

This preview shows pages 1–4. Sign up to view the full content.

Financial Mathematics 5002 : Homework 12 (0059, 0060, 0061, 0062) Due on 2 May 2012 Scot Adams Solutions 0059 M 1 .Let C 1 , C 2 , ...be the usual sequence of L P 1 R M valued PCRVs that model coin M flipping. For all integers n G 1, let D n E C 1 p ... p C n . a.Compute lim n RI E l D n S n 4 p D n S n 5 r . b.Let f ± x ² E ³ 4 x, if 1 L x L 7 0, otherwise. Compute lim n E l f D n S n r . c. Compute lim n E l D n S n 4 M D n S n 6 r . d. Compute lim n E l D n S n 9 p D n S n 2 r . a. lim n E l D n S n 4 p D n S n 5 r E 1 2 Π I MI I ± x 4 p x 5 ² e M x^2 s 2 D x E 3. b. lim n E l f D n S n r E 1 2 Π I 1 7 4 xe M s 2 D x E 4 2 Π ´ e M 1 s 2 M e M 49 s 2 µ . c. lim n E l D n S n 4 M D n S n 6 r E 1 2 Π I I ± x 4 M x 6 ² e M s 2 D x E 3 M 15 EM 12. d. lim n E l D n S n 9 p D n S n 2 r E 1 2 Π I I ± x 9 p x 2 ² e M s 2 D x E 1. 0059 − 2 . a.Compute 1 2 Π I I e 2x M 9 e M x 2 s 2 D x. b.Compute 1 2 Π I M 1 2 e 2x M 9 e M x 2 s 2 D

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
c.Compute 1 2 Π I MI I L e 2x M 9 M 2 R e M x 2 S 2 D x. d.Compute 1 2 Π I I L e 2x M 9 M 2 R P e M x 2 S 2 D e.Compute 1 2 Π I I L e 2 ix M 9 M 2 R e M x 2 S 2 D a. 1 2 Π I I e 2x M 9 e M x 2 S 2 D x E e M 7 2 Π I I e M x 2 S 2 D x E e M 7 . b. 1 2 Π I M 1 2 e 2x M 9 e M x 2 S 2 D x E e M 7 2 Π I M 1 2 e M x 2 S 2 D x E e M 7 2 Π I M 3 0 e M x 2 S 2 D x E e M 7 L C L 0 R MC L M 3 RR . c. 1 2 Π I I L e 2x M 9 M 2 R e M x 2 S 2 D x E 1 2 Π I I e 2x M 9 e M x 2 S 2 D x M 2 2 Π I I e M x 2 S 2 D x E e M 7 M 2. d. 1 2 Π I I L e 2x M 9 M 2 R P e M x 2 S 2 D x E 1 2 Π I L log L 2 R P 9 RS 2 I L e 2x M 9 M 2 R e M x 2 S 2 D x E 1 2 Π I L log L 2 R P 9 RS 2 I e 2x M 9 e M x 2 S 2 D x M 2 2 Π I M L log L 2 R P 9 RS 2 e M x 2 S 2 D x E e M 7 C LL M log L 2 R P 9 RS 2 P 2 R M 2 C L M L log L 2 R P 9 2 R . e. 1 2 Π I I L e M 9 M 2 R e M x 2 S 2 D x E M 2 P 1 2 Π I I e M 9 e M x 2 S 2 D x E e M 11 M 2. 0059 − 3 . Let X be a binary PCRV such that Pr[X = a] = p and Pr[X = b] = q, where p + q = 1. Let f (t) be the Fourier transform of the distribution of X. a.Compute E l X 4 r . b.Compute E l X 5 r . c. Compute f (0). d. Compute f L 4 R (0). e. Compute f L 5 R (0). a.E l X 4 r E p a 4 P q b 4 . b.E l X 5 r E p a 5 P q b 5 . c.The generating function for the distribution of Xis p z a P q z b , so that the Fourier transform is f L t R E p e M ia t P q e M i b t and f L 0 R E p P q E 1. d.f ’ L t R EM i a e M p M i b e M i b t q, f ’’ L t R E M a 2 e M p M b 2 e M i b t q, 2 FM5002-HW12-5.2.12.nb
f L 3 R L t R E i a 3 e M ia t p P i b 3 e M i b t q, so that f ’’ L 0 R E a 4 p P b 4 q. e.f L 4 R L t R E a 4 e M p P b 4 e M i b t q, so that f L 5 R L t R EM i a 5 p M i b 5 0059 − 4 . Let X be a binary PCRV such that Pr[X = a] = p, Pr[X = b] = q, and Pr[X = c] = r, where p + q + r = 1.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 7

FM5002-HW12-5.2.12 - Financial Mathem atics 5002 Hom ework...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online