FM5002-HW5-2.22.12

On the other hand 2h 46 46 2h 2h 46 2 the limit exists

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: mpute 4 z z. 2 d . Show that the complexlimit 32 h4 32 lim h0 h 54 a. does n ot exist . 1 4 z 4 z 5 2 2 2 t5 4 2 1 5 2 4 1 29 t 2 2 t 8t 5 2 16 0 4 b. 1 z 1 4 5 54 464 t 3 841 t 4 3444 t 3158 t 2 t 6463 12 926 3 15 4 t 1 4 4 . t 0 1 1 4 41 1 17 t 2 2 t 42 t 1 4 1681 0 4 c. 296 t 2 64 t 0 4 z 1428 t 3 289 t 4 t 0 1 4 z z 4 2 2 2 t4 4 2 10 687 42 748 15 15 t 0 1 4 2 4 20 t 2 2 t 8t 1 4 2 16 0 54 z 4 z 4 z 21 628 3 2 h0 0042− 3. 4 h h0 3 3 4 2 lim 4 h h 3 2 4 lim h0 320 t 3 400 t 4 t 704 352 3 3 15 156 h 62 h 2 h0 h 2 224 t 2 29 822 15 z 54 d . lim 64 t 0 4 2 lim t 0 104 h 12 h 3 h4 h 42 h 2 h 8 h3 h4 156. On the other han d, 104 . Therefore, the limit does n ot exist . . FM5002−HW5−2.22.12.nb Let P = p (x, y) = −y. Let Q = q (x, y) = x. 2 Let V: 2 be the vector field defin ed by V x, y P, Q . Let Α (t) = (5, 3 + t), Β (t) = (5 − 3t, 4), Γ (t) = (2, 4 − t), ∆ (t) = (2 +3 t, 3), for 0 <= t <= 1. Compute 1 1 VΑ t Α’ t 1 V Βt t 0 Β’ t 0 1 Α’ t 0 Β’ t 0, 1 t 3 t, 4 3, 0 t 1 1 0 0 3t 0 1 12 t t 0, 1 3, 0 t t, 2 0, 1 t 0 1 2t 0 9t 6. 0 Let Α (t) = (5, 3 + t), Β (t) = (5 − 3t, 4), Γ (t) = (2, 4 − t), ∆...
View Full Document

Ask a homework question - tutors are online