FM5002-HW6-3.7.12

# 2 0044 8 3 x3 a compute 2 x 2 x2 x4 b compute x2 2

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 7 x2 2 9 81 729 4 x3 2 6 2 x2 x2 2 6 2 2 x 1 3x 5 1 7 2Π 2 3x 5 x 2 x2 2 2 8 2Π . 3x 2 x7 7 2 2 x2 x. x2 2 2Π x2 x2 2 3 x. 2 x3 x4 9 2 9 4 x 2 9 81 2 756 2 x 7 3 2Π 2 9. x 0. x2 x x2 3 2 x2 x2 2 14 2 2 x2 81 729 81 27 2Π b. Compute x2 x2 2 x2 x2 0044− . 9 a. Compute x 9 x2 4x x2 3 2 9 8 x. 2 2 x2 x3 x 2 x. 2 x 2 x2 x 6 2 3 1 2Π 6 2Π 27 2Π . FM5002−HW6−3.7.12.nb 1 c. Compute x2 3x 5 1 3x 5 1 x. 2 2Π 1 d . Compute x2 2 x. 2Π a. We complete the square an d use the substution u 1 x 3: 3x 5 19 2 x2 2 1 2Π 7 2 x2 1 2 x 2Π 3x 5 d. 1 2Π u2 2 2Π 3x 5 10 x 2 1 c. 19 2 x2 3x 5 19 2 u 10 0 when x 3x 5 5 3 2 . 1. 1 3x 5 1 x2 2 x x2 2 19 2 x 1. 2Π . Therefore, x2 1 19 2 2Π 1 2Π 1 u 2 2Π b. u2 x x 1 2Π 5 3 3x 5 19 2 x2 1 2 14 3 x u2 2 2Π u 5 3 19 2 14 5 3 3 . 3...
View Full Document

## This note was uploaded on 01/19/2014 for the course MATH 5002 taught by Professor Adams during the Spring '08 term at Minnesota.

Ask a homework question - tutors are online