{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Weeks10-11HWSolutions

# F m x f0 1 1 e f0 f0 f k bt 0

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (v) (vi) (vii) ⎤ dm* dFn ⎥ − 2 dx dx ⎥ ⎥ ⎦ 1 d ⎛ 1⎞ + ⎡ EC x + E k , x − Fn x ⎤ ⎣ ⎦ k dx ⎜ T ⎟ ⎝⎠ B (viii) (ix) ! f = "# m\$ x f0 = 1 1 + e! ! f0 ! f0 !" ! f !" = = k BT 0 ! x !" ! x ! E !x { } !" ! \$ E ( x ) + E ( k , x ) # Fn ( x ) & k BT = ' !x !x % C () ⎡ ∂Θ 1 ⎢ ∂EC x 2 k 2 1 = − ∂x k BT ⎢ ∂x 2 m* ⎢ ⎣ () () () () Using (vii) in (vi), we find () ⎧ ⎡ ∂E x ⎛ 1 dm* ⎞ dFn ⎤ ⎫ ⎪⎢ C − E k, x ⎜ * ⎥⎪ ⎟− ∂f0 ∂f0 ⎪ ⎢ ∂x ⎝ m dx ⎠ dx ⎥ ⎪ ⎦ ⎬ = ⎨⎣ ∂x ∂E ⎪ d ⎛ 1⎞⎪ ⎪+T ⎡ EC x + E k , x − Fn x ⎤ dx ⎜ T ⎟ ⎪ ⎣ ⎦ ⎝⎠ ⎩ ⎭ () () () () ECE ­656 2 Fall 2013 Mark Lundstrom 10/27/13 Now consider the derivative in momentum space: ! f0 ! f0 !" ! f !" = = k BT 0 ! px !" ! px ! E ! px (x) !" = #x ! px ( k T ) (xi) B (xii) so (x) becomes ! f0 ! f0 = " ! px ! E x Using (ix) and (xii) in (iv), we write the solution to the BTE as δ f = −τ mυ x ⎧ ⎛ 1 dm* ⎞ ⎫ ∂f0 ∂f0 ⎪ dE ⎪ + τ m ⎨ C − E k, x ⎜ * ⎟ ⎬ ∂p ∂x ⎝ m dx ⎠ ⎪ x ⎪ dx ⎩ ⎭ () (xiii) After simplifying the algebra, the final result: % \$ f ( 0 dF d % 1(3 ! f = "# m ' " 0 * + x 1" n + T , EC ( x ) + E ( k , x ) " Fn ( x ) . ' * 4 / dx & T ) & \$ E ) 2 dx 5 is exactly the same as the result for a position independent bandtructure. Accordingly, the current equation for a semiconductor with a position ­dependent bandstructure is identical to that of a uniform semiconductor: J nx = σ 3) ( d Fn q dx ) − σ S dT dx In Lecture 24 (Lecture 15, Fall 2011) we stated that for power law scattering in 2D !m = !0 ( " s+2 () "2 ) , where s is the characteristic exponent in the expression ! ( E " EC ) = ! 0 #( E &...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online