0 2 sin x 1 cos x 2 m n m n b m

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ا‬ : ‫الصيغة العامة‬ : ‫علقة التابع بيتا بالتابع غاما‬ B m , n = ∞ ∞ 0 • m n m n : ‫البرهان‬ ∞ 0 • 0 m n =∫ e −t t m −1 dt ∫ e− n− 1 d =∫ e−t t m −1 n−1 dt d ∞∞ 2 2 2 t = 2xdx , = 2ydy ‫ و بالتالي‬t = x 2 , = y 2 ‫بفرض أن‬ 2 = 4 ∫∫ e − x y x 2m− 2 y 2n− 2 x y dxdy 00 ∞∞ = 4 ∫∫ e − x y x 2m−1 y 2n −1 dxdy 00 : ‫و بالنتقال إلى الحداثيات القطبية‬ 2 2 2 r = x y , x = rcos , y =rsin 2...
View Full Document

This document was uploaded on 01/18/2014.

Ask a homework question - tutors are online