bus-stat-book1

Bus-stat-book1

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: makes possible estimation or prediction. 9.1.1 Definition: Regression is the measure of the average relationship between two or more variables in terms of the original units of the data. 9.2 Types Of Regression: The regression analysis can be classified into: a) Simple and Multiple b) Linear and Non –Linear c) Total and Partial a) Simple and Multiple: In case of simple relationship only two variables are considered, for example, the influence of advertising expenditure on sales turnover. In the case of multiple relationship, more than 218 two variables are involved. On this while one variable is a dependent variable the remaining variables are independent ones. For example, the turnover (y) may depend on advertising expenditure (x) and the income of the people (z). Then the functional relationship can be expressed as y = f (x,z). b) Linear and Non-linear: The linear relationships are based on straight-line trend, the equation of which has no-power higher than one. But, remember a linear relationship can be both simple and multiple. Normally a linear relationship is taken into account because besides its simplicity, it has a better predective value, a linear trend can be easily projected into the future. In the case of non-linear relationship curved trend lines are derived. The equations of these are parabolic. c) Total and Partial: In the case of total relationships all the important variables are considered. Normally, they take the form of a multiple relationships because most economic and business phenomena are affected by multiplicity of cases. In the case of partial relationship one or more variables are considered, but not all, thus excluding the influence of those not found relevant for a given purpose. 9.3 Linear Regression Equation: If two variables have linear relationship then as the independent variable (X) changes, the dependent variable (Y) also changes. If the different values of X and Y are plotted, then the two straight lines of best fit can be made to pass through the plotted points. These two lines are known as regression lines. Again, these r...
View Full Document

This note was uploaded on 01/18/2014 for the course BUS 100 taught by Professor Moshiri during the Winter '08 term at UC Riverside.

Ask a homework question - tutors are online