{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

physics 122 Lecture 02 October 1st 2013_final

# physics 122 Lecture 02 October 1st 2013_final - Lecture 2...

This preview shows pages 1–9. Sign up to view the full content.

Lecture’2’ October’1,’2013’

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
COLLECTIVE’BEHAVIOR’ By’collec;ve’behavior’we’mean’mo;on’that’ depends’not’only’on’local’condi;ons’but’on’ the’state’of’the’plasma’in’remote’regions’as’ well’ Local’concentra;ons’of’+ ve’and- ve’charges’give’rise’to’E’Felds.’ Mo;on’of’charges’give’currents’and’hence’magne;c’Felds.’These’Felds’ a±ect’the’mo;on’of’the’plasma’far’away’ Compare’with’molecules’of’air’no’EM’ gravita;onal’forces’are’negligible’just’ collisions’
Concept’of’temperature’ Ο Π Ξ Μ Ν Λ = kT mu A u f 2 2 1 exp ) ( Figure I.4 where f is the number of particles per cm 3 with velocity between u and u + du . 2 2 1 mu is the kinetic energy k is the Boltzmann’s constant k = 1.38 × 10 -23 J/ o K The number n , or number of particles per cm 3 , is given by = . ) ( du u f n The constant A is related to the density n by 2 / 1 2 Ο Π Ξ Μ Ν Λ π = m n A The width of the distribution is characterized by the constant T which we call the temperature. To see the exact meaning of T , we can compute the average kinetic energy of particles in this distribution.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
= du u f du u f mu E av ) ( ) ( 2 1 2 Defining 2 / 1 ) / 2 ( m kT v th = and , / th v u y = we can express f ( u ) and E av as = = dy y Av y y mAv E v u A u f th th av th ) exp( ) exp( 2 1 ) / exp( ) ( 2 2 2 3 2 2 The integral in the numerator is integrable by parts [ ] [ ] + + + = = dy y dy y y y dy y y y ) exp( 2 1 ) exp( 2 1 ) exp( 2 1 ) exp( 2 2 2 2 Canceling the integrals we have kT mv Av mAv E th th th av 2 1 4 1 4 1 2 3 = = Ο Π Ξ Μ Ν Λ =
Temperature’ ’(in’3-D)’ E av =3KT/2’ Since’ T ’and’ E av ’are’so’closely’related,’it’is’customary’in’plasma’ physics’to’give’temperatures’in’units’of’energy.’ To’avoid’confusion’on’the’number’of’dimensions’involved’it’is’not’ E av ’but’ rather’the’energy’corresponding’to’ kT ’that’is’used’to’denote’the’ temperature.’ For’ kT ’=’1’ eV’=’1.6’×’10 -19 ’J,’we’have’ Thus’the’conversion’factor’is’1’ eV’=’11,600’ o K’ By’a’2-eV’plasma’we’mean’that’ kT ’=’2’ eV,’or’ E av ’=’3’ eV’in’(3D)’ 600 , 11 10 38 . 1 10 6 . 1 23 19 = × × = T

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Debye’Length’ DEBYE’SHIELDING’
Debye Length ε 0 2 φ = 0 2 x 2 = e n i n e ( ) This comes from: ∇⋅ E = σ 0 E = −∇ E = ∇⋅ −∇ ( ) = −∇ 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
f ( u ) = A exp 1 2 mu 2 + q φ " # \$ % & ' kT e ( ) * + , - ( ) e e kT e n n exp = ε 0 d 2 dx 2 = en exp e kT e " # \$ % & ' " # \$ % & '− 1 ) * + + , - .
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 30

physics 122 Lecture 02 October 1st 2013_final - Lecture 2...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online