12_variation_perturbation_matrixhq

# 246 1 22 1 1 x 4 2 x2 1 x 2 2 dx

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 dx 2 1/ 2 6 10/7/2013 Find Optimal Value of Parameter 4 parameterized energy expression 2 Find Best Value of Parameter 4 2 4 2 0 2 4 2 plug this back into energy expression 2 , 4 2 2 4 2 1 2 / 0.707 2 0.500 Compare to True Result 1 Get Trial Wavefunction Normalize 1 1 ∗ 1 1 1 2 2 1 1 1 1 1 x 22 dx 2 1/ 2 2 Compare to True Wavefunction / True where is the same Trial 7 10/7/2013 Textbook Harmonic Oscillator / / and , where ! Dr. Coe’s Lecture Harmonic Oscillator / / where and ! 1/ Therefore Variational Method: Example 3 – Ground State Energy of He r1 Internal Hamiltonian 2 1 2 1 2 4 1 4 1 1 4 -e r12 Z=+2e helium r2 -e Hard to solve exactly due to electron-electron interactions If we ignore this term, then the operator is separable 1 2 and ( 4.000 ) and since Trial Wavefunction / / Find Expression for Trial Energy Treat Z like a variational parameter, then after a great deal of algebraic work (Ch. 8) 27 in atomic units 8 8 10/7/2013 Variational Method: Example 3 – Ground State Energy of He Find Optimal Value of Parameter 27 8 parameterized energy expression Find Best...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online