{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

12_variation_perturbation_matrixhq

# N 1 23 a n 1 1 2 2 1 3 5 2n 1 2 n ax 0 x

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3 2 1 1 1 2 2 3 1 1 2 2 3 2 1 22 2 1 22 0 2 e ax dx 4a 8 Useful integrals n! n 1, 2,3,... a n 1 1/ 2 2 1 3 5 (2n 1) 2 n ax 0 x e dx 2n1 a n a 0 2 1/ 2 0 x n e ax dx x 2 n 1e ax 2 n! dx n 1 2a n 1, n 0,1, 2,3,... 3 10/7/2013 Find Optimal Value of Parameter 3 2 8 parameterized energy expression Find Best Value of Parameter 3 2 8 3 2 81 2 0 18 3 0.2829 Bohr-2 plug this back into energy expression 3 , 8 38 29 2 8 8 9 1 Compare to True Result 1 2 2 0.4244 0.5000 true result variational method result gets ~85% of true result Get Trial Wavefunction 0.2829 Bohr-2 where ∗ Normalize 4 4 42 1 3 5 (2n 1) 2n 1 a n a 1/ 2 x 2 n e ax dx 2 / 1 2 2 / 2 0 0.2765 Compare to true wavefunction . n 1, 2,3,... not 1, so wavefunction gets divided by the square root of this Simplest Gaussian basis function is not that good. Gaussian software uses many. 0.5642 4 10/7/2013 wavefunction (Bohr^-3/2) Compare Trial Wavefunction to True Wave Wavefunction 0.5642 true 0.4 ( r) . 0.2765 trial ( r) 0.2 0 0 1 2 3 4 5 r Radia...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online