If wel1flag 0 then the wel1 output file will not be

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: itten information depends on the selection of a number of options, as described below. Some options will save specific types of information for all multi-node wells to a single file, and other options will save certain information about an individual multi-node well to a single file. These output options can facilitate graphical postprocessing of the calculated data. The input file is read if the file type (Ftype) “MNWI” is included in the MODFLOW name file, and MNWI should only be used if the MNW2 Package is active. In the following description, input parameters are indicated as being optional by their enclosure in curly brackets. All input data are read using free formats. FOR EACH SIMULATION: 1. Data: WEL1flag QSUMflag BYNDflag WEL1flag is an integer value indicating whether or not to create an output file in which the flows from every MNW node at the end of each stress period are written as single-cell fluxes in the format of the original MODFLOW Well Package (WEL1). This is equivalent to the “WEL1” option in the original MNW Package (Halford and Hanson, 2002). If WEL1flag = 0, then the WEL1 output file will not be created. If WEL1flag > 0, then the value of WEL1flag is the unit number to which the WEL1 information will be saved. QSUMflag is an integer value indicating whether or not to create an output file that lists the flow rates from each multi-node well for each time step. This is essentially equivalent to the “QSUM” option in the original MNW Package (Halford and Hanson, 2002). If QSUMflag = 0, then the QSUM output file will not be created. If QSUMflag > 0, then the value of QSUMflag is the unit number to which the QSUM information will be saved. BYNDflag is an integer value indicating whether or not to create an output file in which the flows and other information associated with every MNW node are written to a single file. This is essentially equivalent to the “BYNODE” option in the original MNW Package (Halford and Hanson, 2002). If BYNDflag = 0, then the output file will not be created. If BYNDflag > 0, then the value of BYNDflag is the unit number to which the nodal information will be saved. Note 11: Unit numbers must be unique and matched to a DATA file type and file name in the MODFLOW name file. Appendix 1—Data Input Instructions for Multi-Node Well (MNW2) Package 53 Note 12: As noted by Halford and Hanson (2002, p. 15), the WEL1 file can be used in post-processing programs, such as MODPATH (Pollock, 1994), that currently are not compatible with multi-node wells. Although flow rates for constrained wells can change during a stress period, only flow rates from the last time step of each stress period are reported because the WEL1 Package is limited to a pumping rate that is constant and uniform in a given well during each stress period. The WEL1 file will not include information about auxiliary variables or wells that were specified using the standard WEL Package of MODFLOW. Note 13: The QSUM file will include a table of values for all multi-node wells for all times that consists: of the sum of all nodal inflows (Q < 0) from the aquifer to each well (L3/T), the sum of all nodal outflows (discharges; Q > 0) to the aquifer from each well (L3/T), the net flow at the wellhead (L3/T), and the calculated head in the well (L). If the GWT process is active, then calculated concentrations in the well will also be saved, with the exact information depending on the flow. For withdrawal wells (Qnet < 0), the MNWI Package will record the calculated concentration in the well discharge at the wellhead. For highrate injection wells (Qnet > 0 and no inflow at any nodes of the MNW), the MNWI Package will record the user-specified source concentration ( ). For nonpumping wells and low-rate injection wells (which include a mix of inflow and outflow nodes in the MNW), the MNWI Package will record the length-weighted average concentration in the borehole. Note 14: The BYND file will include a table of values for all nodes of all multi-node wells for all times listing the flow between the node and the aquifer (Q < 0 represents flow out of the aquifer into the well; Q > 0 represents flow out of the well into the aquifer), and the calculated heads in both the cell and the well. If the GWT process is active, then the calculated concentration in the well at that nodal location will also be saved. FOR EACH SIMULATION: 2. Data: MNWOBS MNWOBS Number of multi-node wells for which detailed flow, head, and (if the GWT process is active) solute data are to be saved in a separate file for each multi-node well. MNWOBS must be ≥ 0. IF MNWOBS > 0, THEN FOR EACH MULTI-NODE WELL TO BE MONITORED: 3. Data: WELLID UNIT QNDflag QBHflag {CONCflag} WELLID is the name of the multi-node well. This is an alphanumeric identification label for each well, as defined in dataset 2a. The text string is limited to 20 alphanumeric characters. UNIT is the unit number for the output file. QNDflag is an integer flag used to indicate whether additional flow information...
View Full Document

This document was uploaded on 01/20/2014.

Ask a homework question - tutors are online