d d 4 2 2 r 2r sin r dr d 0 0 8 22 3 y c 1 d x 0 0 2

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ∂x ∂y dy dx = 1 3 y 1 D C x 0 0 1 Figure 31 (b) D = {(x, y ) | − 2 ≤ x ≤ 2, x2 ≤ y ≤ 4} (Figure 32) C 2 y 2 − tan−1 x dx + (3x + sin y ) dy 4 = −2 x2 ∂ ∂ (3x + sin y ) − y 2 − tan−1 x ∂x ∂y 4 dy dx = − y D C x −2 0 2 Figure 32 (c) D = {(r, θ) | 0 ≤ r ≤ 1 + cos θ, 0 ≤ θ ≤ 2π } (Figure 33) ∂ ∂ x2 − (2xy ) dA = 0 ∂x ∂y 2xy dx + x2 dy = C D 4 96 5 y C 1 D x 2 −1 Figure 33 π 4 (d) D = (r, θ) | 0 ≤ r ≤ 2, 0 ≤ θ ≤ C (Figure 34) ∂ ∂ xy 2 − y 2 − x2 y ∂x ∂y F • dr = y 2 − 2y + x2 dA dA = D D π 4 2 2 r − 2r sin θ (r dr dθ) = π + = 0 0 8 √ 2−2 3 y C 1 D x 0 0 2 Figure 34 √ √ (e) D = (x, y ) | − 1 ≤ x ≤ 1, − 4 1 − x4 ≤ y ≤ 4 1 − x4 (Figure 35) C 1 F • dr = √ 4 −1 ∂ ∂ x4 − x3 y ∂x ∂y √ 4 dA = D − 1−x4 3x3 dy dx = 0 1−x4 y 1 C D x −1 1 −1 Figure 35 3. D = {(x, y ) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x} (Figure 36) 1−x 1 C F • dr = 0 0 ∂ ∂ 1 [x (x + y )] dy dx = − xy 2 − ∂x ∂y 12 5 y 1 C D x 0 0 1 Figure 36 4. D = {(r, θ) | 0 ≤ r ≤ 2, 0 ≤ θ ≤ π } (Figure 37) C ∂ ∂ x3 + 3xy 2 − (x) dA = ∂x ∂y F • dr = π 2 3r2 (r dr dθ) = 12π 0 0 D y 2 C D x −2 0 2 Figure 37 y x and Q (x, y ) = 2 are undefined at the origin and the origin 2 +y x + y2 lies in region D, then both P (x, y ) and Q (x, y ) are discontinuous at the origin and the partial derivatives do not exist. Therefore, we could not evaluate th...
View Full Document

This document was uploaded on 01/23/2014.

Ask a homework question - tutors are online