Lecture 21 Notes

Pi qi 1piqi vers ri si 1risi vir ui vi 1uivi

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: actors ϕ0 ϕ1–ϕ4 setosa p versicolor q virginica 1–p–q lo m hi set. pi qi 1–pi–qi vers. ri si 1–ri–si vir. ui vi 1–ui–vi Continuous factors ϕ1 lo set. m p1 q1 vers. r1 s1 vir. u1 v1 hi Φ1 (￿, s) = 1–p1–q1 2 2 exp(−(￿ − ￿s ) /2σ ) 1–r1–s1 parameters ￿ , ￿ , ￿ ; 1–u1–v1 Discretized petal length constant σ 2 set vers vir Continuous petal length Simpler example H p T 1–p Coin toss Parametric model class H is a parametric model class: each H in H corresponds to a vector of parameters θ = (p) or θ = (p, q, p1, q1, r1, s1, …) Hθ: X ~ P(X | θ) (or,Y ~ P(Y | X, θ)) Contrast to discrete H, as in version space Could also have mixed H: discrete choice among parametric (sub)classes Continuous prior E.g., for coin toss, p ~ Beta(a, b): 1 P (p | a, b) = pa−1 (1 − p)b−1 B (a, b) Specifying, e.g., a = 2, b = 2: P (p) = 6p(1 − p) Prior for p 5 4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 Coin toss, cont’d Joint dist’n of parameter p and data xi: P (p, x) = P (p) ￿ i = P (xi | p) 6p(1 − p) ￿ i p (1 − p) xi 1−xi Coin flip posterior P (p | x) = P (p) = ￿ i P (xi | p)/P (x) ￿...
View Full Document

Ask a homework question - tutors are online