hw_2_soln_corrected

Which will be left implicit 4 rewrite in differential

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: y sin x d x + e x cos y + 2 cos x d y , = = = e x sin y + 2 y sin x ￿ ￿ f y x, y and ￿￿ e x sin y − 2 y cos x + g ￿ y￿ e x cos y − 2 cos x + g ￿ y ￿ ￿ fx x, y and Combine the last pair of equations: ￿￿ e x cos y − 2 cos x + g ￿ y ￿￿ g￿ y ￿￿ gy = . . . = = e x cos y + 2 cos x (5) e x cos y + 2 cos x = e x cos y + 2 cos x 0 0 = (6) Substitute (6) into (5): ￿ ￿ f x , y = e x sin y − 2 y cos x The general solution is e x sin y − 2 y cos x = C ...which will be left implicit. 4. Rewrite in differential form: ￿ ￿ dy x ln y + x y + y ln x + x y ￿ ￿ ￿ ￿d x x ln y + x y d x + y ln x + x y d y = 0 = 0 This differential is not exact: ￿ ∂￿ x ln y + x y d x ∂y ￿ ∂￿ y ln x + x y ∂x = = x + x; y y + y. x (These two are not equal, for example, when x = 1 and y = 2.) 5. Rewrite in differential form: ￿ ￿ dy x − y 3 + y 2 sin x + −3x y 2 − 2 y cos x dx ￿ ￿ ￿ ￿ 3 2 2 x − y + y sin x d x + −3x y − 2 y cos x d y = 0 = 0 This differential is exact: ￿ ∂￿ x − y 3 + y 2 sin x ∂y ￿ ∂￿ −3x y 2 − 2 y cos x ∂x 3 =...
View Full Document

This note was uploaded on 01/26/2014 for the course MATH 527 taught by Professor Boucher during the Spring '07 term at New Hampshire.

Ask a homework question - tutors are online