hw08soln - ECE 310, Spring 2005, HW 8 solutions Problem...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
ECE 310, Spring 2005, HW 8 solutions Problem E7.1 a) lim x,y →∞ F ( x,y ) = 0 . 5 + 0 . 5 = 1 b) F Y ( y ) = lim x →∞ F ( x,y ) = 0 . 5 F 2 ( y ) + 0 . 5 F 4 ( y ) Yes, by Theorem 5.3.1 c) f ( x,y ) = 2 F ( x,y ) ∂x∂y = 0 . 5 f 1 ( x ) f 2 ( y ) + 0 . 5 f 3 ( x ) f 4 ( y ) d) Yes, since f ( x,y ) 0 and R R 2 f ( x,y ) = 1 e) Yes. Problem E7.5 a) f Y ( y ) = Z -∞ f X,Y ( x,y ) dx = = ‰ R 1 0 3 x 2 dx, if 0 y 1, 0, otherwise. = 1 , if 0 y 1, 0, otherwise. = U ( y ) U (1 - y ) b) F Y ( y ) = Pr ( Y y ) = Z y -∞ f Y ( z ) dz = yU ( y )[1 - U ( y - 1)] + U ( y - 1) c) P ( X Y ) = ZZ y x f X,Y ( x,y ) dxdy = Z 1 x =0 Z x y =0 3 x 2 dydx = = Z 1 x =0 3 x 2 [ y | x 0 ] dx = Z 1 0 3 x 3 dx = 3 x 4 4 | 1 0 = 3 4 d) f X ( x ) = 3 x 2 U ( x ) U (1 - x ) f X,Y ( x,y ) = f X ( x ) f Y ( y ) product construction 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Problem E7.12 P ( Y X + 1 2 ) = Z Z x + 1 2 y f X,Y ( x,y ) dxdy = Z 1 2 x =0 Z 1 y = x + 1 2 ( x + y ) dydx = = Z 1 2 0 ( xy + y
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 4

hw08soln - ECE 310, Spring 2005, HW 8 solutions Problem...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online