Chapter 6 Problem Solutions

Therefore yhx t l i yhx t l 1 et m 1 2 i y1

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: = 2 Bn 1 2 L 2 L 2 Ÿ 0 „ x sin I Bn 2 Bn npx M L L 2npx ME L 2 Ÿ 0 „ x A1 - cosI ¬༼ sinH2 n pL = sinH0L = 0, so cosine Ÿ is 0 Setting equal to 1 and choosing Bn to be real gives Bn = 2êL thus 2 ê L sinI yn HxL = npx M L 0 0<x<L elsewhere and we have yHxL = I 1+ M y1 HxL 2 + 1 2 y2 HxL Time evolution imparts a phase onto each of the energy eigenstates. Therefore  yHx, t L = I yHx, t L = 1+ - Et M‰ — 1 2 I y1 HxL + 1+ - M expB 2 m — 2 0 I 1 p— 2 M L 2 tF  ‰ - E2 t — 2 L y2 HxL sin I px M+ L ¬༼ En = 1 2 1 2m - I np— 2 M, L expB 2 m — I and substitute in y81, 2< from above 2p— 2 M L Printed by Mathematica for Students tF 2 L sin I 2px M L 0<x<L elsewhere Time evolution imparts a phase onto each of the energy eigenstates. Therefore 6 Ch6ProblemSetKey.nb  1+ - Et yHx, t L = I 2 M ‰ — 1 I yHx, t L = y1 HxL + 1+ - M expB 2 m — 2 I 1 p— 2 M L 2 tF  ‰ - E2 t — 2 L y2 HxL sin I px M+ L ¬༼ En = 1 2 1 2m I - np— 2 M, L expB 2 m — I and substitute in y81, 2< from above 2p— 2 M L tF 2 L 0 We have XE\ = ⁄¶= 1 En pHEn L = ⁄¶= 1 En Xyn y\ n n 2 From our expression for yHxL in part (a), we see...
View Full Document

Ask a homework question - tutors are online