convective_boundary_value_problems

# Haghighi as for t n t n da un vn conv a x y

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: T ⎛ D ∂φ cos θ + D ∂φ sin θ ⎞ dΓ ⎟ I y ∫Γ ⎜ x ∂x ⎜ ⎟ ∂y ⎝ ⎠ T T (e ) = ⎛ ⎛ D ∂[N] ∂[N] + D ∂[N] ∂[N] ⎞ dA ⎞ + ⎜⎜ k ∫A ⎜ x ∂x ∂x y ∂y ∂y ⎟ ⎟ ⎟⎟ ⎜ ⎠⎠ ⎝⎝ ⎛⎛T ∂[N] ⎞ ⎞ ∂[N] T ⎜ ∫ ⎜ [N] ρ φu ⎟ dA ⎟ + [N] ρ φ v ⎜ A⎜ ∂y ⎟ ⎟ ∂x ⎠⎠ ⎝⎝ T + ∫ G[N] [N] dA A New Chapter Page 6 K. Haghighi and {f (e )}= ∫A Q[N]T dA where e) [k (e) ]= [kD(e) ]+ [k (conv ]+ [k G(e) ] New Chapter Page 7 K. Haghighi • Element Matrices: Triangular Elements [ φ (e ) = Ni N j Nk {Φ} [ [ The matrices k D(e ) , k G(e ) and {f e } after integration yields (similar to Ch 7 in Segerlind) New Chapter Page 8 K. Haghighi ⎡ b2 ⎢i (e ) = D x ⎢ b b kD ij 4A ⎢ ⎢b ib k ⎣ b ib j b2 j b jb k ⎡ c2 b ib k ⎤ ⎥ Dy ⎢ i ⎢ c ic j b jb k ⎥ + ⎥ 4A ⎢ 2 bk ⎥ ⎢c ic k ⎦ ⎣ c ic j c2 j c jc k c ic k ⎤ ⎥ c jc k ⎥ ⎥ ck ⎥ ⎦ ⎡2 1 1⎤ GA ⎢ 1 2 1⎥ k (e ) = G ⎥ 12 ⎢ ⎢ 1 1 2⎥ ⎣ ⎦ and ⎧1⎫ (e ) = QA ⎪1⎪ f ⎨⎬ 3⎪⎪ ⎩1⎭ {} New Chapter Page 9 K. Haghighi As for [ ⎛ T ∂[N] T ∂[N] ⎞ ⎟ dA = ∫ ⎜ ρ φu[N] + ρ φ v[N] Conv A⎜ ∂x ∂y ⎟ ⎝ ⎠ k (e ) Selecting the first term yields ⎧ Ni ⎫ ⎧ Ni ⎫ ρ φu ⎪ ⎪ ⎪ ⎪ ⎧ ∂Ni ∂N j ∂Nk ⎫ ∫A ρ φu⎨ N j ⎬ ⎨ ∂x ∂x ∂x ⎬dA = ∫A 2A ⎨ N j ⎬ bi b j bk dA ⎭ ⎪N ⎪ ⎩ ⎪N ⎪ ⎩ k⎭ ⎩ k⎭ { } New Chapter Page 10 K. Haghighi Using the factorial equation and applying it to the whole term results in: ⎡b ρ φu ⎢ i ⎢ bi k (e ) = Conv 6⎢ ⎢ bi ⎣ [ bj bj bj bk ⎤ ⎥ ρv ⎥+ φ bk 6 ⎥ bk ⎥ ⎦ ⎡c ⎢i ⎢ ci ⎢...
View Full Document

## This document was uploaded on 01/29/2014.

Ask a homework question - tutors are online