2 csc t t z n s n 0 r 1 r 2 1 sec t t z n s

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: , T z n S , n 0, r 1, r 2,! 1· § sec T , T z ¨ n  ¸ S , n 0, r 1, r 2,! 2¹ © cot T , T z n S , n 0, r 1, r 2,! Range The range is all possible values to get out of the function. csc T t 1 and csc T d 1 1 d sin T d 1 1 d cos T d 1 sec T t 1 and sec T d 1 f d tan T d f f d cot T d f Period The period of a function is the number, T, such that f T  T f T . So, if Z is a fixed number and T is any angle we have the following periods. sin ZT o T cos ZT o T tan ZT o T csc ZT o T sec ZT o T cot ZT o T 2S Z 2S Z S Z 2S Z 2S Z S Z © 2005 Paul Dawkins Formulas and Identities Tangent and Cotangent Identities sin T cos T tan T cot T cos T sin T Reciprocal Identities 1 1 csc T sin T sin T csc T 1 1 sec T cos T cos T sec T 1 1 cot T tan T tan T cot T Pythagorean Identities sin 2 T  cos 2 T 1 tan 2 T  1 sec 2 T 1  cot 2 T csc 2 T Even/Odd Formulas sin T  sin T csc T cos T cos T tan T  cscT sec T sec T cot T  cot T  tan T Periodic Formulas If n is an integer. sin T  2S n sin...
View Full Document

This document was uploaded on 02/02/2014.

Ask a homework question - tutors are online