{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Trig Cheat Sheet - Courtesy of...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
© 2005 Paul Dawkins Definition of the Trig Functions Right triangle definition For this definition we assume that 0 2 ± ² ³³ or 0 90 ´³ ³ ´ . opposite sin hypotenuse µ hypotenuse csc opposite µ adjacent cos hypotenuse µ hypotenuse sec adjacent µ opposite tan adjacent µ adjacent cot opposite µ Unit circle definition For this definition is any angle. sin 1 y y µµ 1 csc y µ cos 1 x x 1 sec x µ tan y x µ cot x y µ Facts and Properties Domain The domain is all the values of that can be plugged into the function. sin , can be any angle cos , can be any angle tan , 1 ,0 , 1 , 2 , 2 nn ²± ¶· ¸¹ µ º º »¼ ½¾ ! csc , , 1 , 2 , ¸µ º º ! sec , 1 , 1 , 2 , 2 µ º º ! cot , , 1 , 2 , º º ! Range The range is all possible values to get out of the function. 1s i n 1 ¿À À csc 1 and csc 1 ÁÀ ¿ 1 cos 1 À sec 1 andsec 1 ¿ tan ¿Â À À  cot ¿Â À À  Period The period of a function is the number, T , such that ÃÄ Ã Ä fT f ²² ¹µ . So, if Å is a fixed number and is any angle we have the following periods. sin Ų Æ 2 T µ cos Æ 2 T µ tan Æ T µ csc Æ 2 T µ sec Æ 2 T µ cot Æ T µ adjacent opposite hypotenuse x y Ã Ä , xy x y 1 Courtesy of http://tutorial.math.lamar.edu/pdf/Trig_Cheat_Sheet.pdf. For Math 127, you should know items in the solid boxes without needing to look them up.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}