Limit of a Function

19 lim xl0 ft 2 ex 1 x x2 20 lim x ln x x 2 xl0 300 x

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: R 2 LIMITS AND DERIVATIVES x 2 � 2x , xl �1 x � x � 2 x � 0, �0.5, �0.9, �0.95, �0.99, �0.999, �2, �1.5, �1.1, �1.01, �1.001 stream after t hours. Find lim f �t� 18. lim lim f �t� and t l 12� t l 12� and explain the significance of these one-sided limits. 19. lim xl0 f(t) 2 ex � 1 � x , x2 20. lim x ln� x � x 2 �, � xl0 300 x � �1, �0.5, �0.1, �0.05, �0.01 x � 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001 21–24 Use a table of values to estimate the value of the limit. If you have a graphing device, use it to confirm your result graphically. 150 4 8 12 16 21. lim t sx � 4 � 2 x 22. lim tan 3 x tan 5x 23. lim 0 x6 � 1 x10 � 1 24. lim 9x � 5x x xl0 xl1 1�x ; 11. Use the graph of the function f � x� � 1��1 � e � to state the value of each limit, if it exists. If it does not exist, explain why. (a) lim f � x� � xl0 (b) lim f � x� � xl0 25–32 Determine the infinite limit. (c) lim f � x� xl0 xl0 xl...
View Full Document

This note was uploaded on 02/04/2014 for the course MATH 160 taught by Professor Staff during the Spring '08 term at Boise State.

Ask a homework question - tutors are online