0 ri20 22 18 statistics 503

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: #?;#H8*.+I">? Statistics 503, Spring 2013, ISU 10 10 6/((/2#&-$"*%( > library(MissingDataGUI) > MissingDataGUI(algaet) !2$$2(I$*+(*,#)"&* <7"'*0#&$ ?GP*<+'-.")"*<#$"$Y* H*<#$"$*'2$$2(I*+(*?* 0#&Y*H*<#$"$*'2$$2(I* +(*M*0#&$Y*!"#$%&%" '(%%()*"+)","-$.% Statistics 503, Spring 2013, ISU 11 11 Statistics 503, Spring 2013, ISU 12 12 Statistics 503, Spring 2013, ISU 12 12 Statistics 503, Spring 2013, ISU 12 12 Missing on low pH, could be a problem Statistics 503, Spring 2013, ISU 12 12 Missing on low pH, could be a problem Statistics 503, Spring 2013, ISU 12 12 Missing on low pH, could be a problem Statistics 503, Spring 2013, ISU 12 12 Missing on low pH, could be a problem No missings on a1−a7, but ots of 2013, ISU Statisticsl503, Springzero’s, suspicious! 12 12 6/((/2#&-$"*%( Z+,*42'"($2+( ["#$+(#5.6*(+&'#..6*$7#-"4 O"#&"$)*("2I75+&$*+&*'%.)2-."*2'-%)#)2+(* $7+%.4*,+&\*,".. !"#(9'"42#(9&#(4+'*,+%.4*#.$+*-&+5#5.6* 5"*L]3*-#&)2<%.#&.6*2/*,"&"*<#.<%.#)"4* $"-#&#)".6*56*)7"*<#)"I+&2<#.*0#&2#5."$3*$2(<"* )7"&"*#&"*^%$)*#*$'#))"&2(I*+/*'2$$2(I$ Statistics 503, Spring 2013, ISU 13 13 7$/.8/(%&.%"$)/92(:/4( > library(rggobi) > ggobi(algaet.imp) N.I#"*)6-"$8*R)&2-$* +/*W_$`* J+$$25.6*(+(; 4")"<)$ =+%.4*5"*2/*+("*2$* -&"$"()*+)7"&*2$* #5$"(): Statistics 503, Spring 2013, ISU 14 14 7$/.8/(%&.%"$)/92(:/4( > library(rggobi) > ggobi(algaet.imp) a#)"&*<7"'2$)&6 *R+'"*<+&&".#)2+( *R)2..*+%).2"&$3*$'#.. O+)72(I*'#^+& Statistics 503, Spring 2013, ISU 15 15 5$)%#9./'$"&;$.( R"#$+(*D0"&)2<#.F*0$* "0"&6*+)7"&*0#&2#5." O+*'#^+&*42Q"&"(<"$* 5"),""(*$"#$+($ Statistics 503, Spring 2013, ISU 16 16 5$)%#9./'$"&;$.( R2E"*D0"&)2<#.F*0$*"0"&6* +)7"&*0#&2#5." A2Q"&"(<"$*$""(*,2)7* 'CJK3*#(4*#*/",* +)7"&$ Statistics 503, Spring 2013, ISU 17 17 <%(492(%&;(&+%4&;$.( #?*0$*,#)"& R+'"*("I#)20"* #$$+<2#)2+($ 18 Statistics 503, Spring 2013, ISU 18 =9.#9>(&39+%" O+*)&#($/+&'#)2+($3*+JLP*2(<.%4"4 mxPH mnO2 Cl NO3 75 50 25 0 a1 6 7 8 NH4 9 5 10 300 400 0 200 400 0 Statistics 503,Chemical 200 400ISU Spring 2013, 600 800 0 oPO4 0 100 200 PO4 10 20 30 Chla 40 75 50 25 0 0 5000 10000150002000025000 0 30 60 90 19 19 a1 = β0 + β1 mxPH + β2 mnO2 + β3 Cl + β4 NO3 + β5 NH4 + β6 PO4 + β7 Chla + τseason + τsize + τspeed + ε, ε ∼ N (0, σ 2 ) =9.#9>(&39+%" a1 = β0 + β1 mxPH + β2 mnO2 + β3 Cl + β4 NO3 + β5 NH4 + β6 oPO4 + β7 PO4 + β8 Chla + τseason + τsize + τspeed + ε, ε ∼ N (0, σ 2 ) > algae.torgo <- knnImputation(algae[-c(62, 199),], k=10) > lm.a1 <- lm(a1 ~ .,data=algae.torgo[,1:12]) > summary(lm.a1) ... Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 42.942055 24.010879 1.788 0.07537 . seasonspring 3.726978 4.137741 0.901 0.36892 seasonsummer 0.747597 4.020711 0.186 0.85270 seasonwinter 3.692955 3.865391 0.955 0.34065 sizemedium 3.263728 3.802051 0.858 0.39179 sizesmall 9.682140 4.179971 2.316 0.02166 * ... Statistics 503, Spring 2013, ISU 20 20 a1 = β0 + β1 mxPH + β2 mnO2 + β3 Cl + β4 NO3 + β5 NH4 + β6 PO4 + β7 Chla + τseason + τsize + τspeed + ε, ε ∼ N (0, σ 2 ) =9.#9>(&39+%" a1 = β0 + β1 mxPH + β2 mnO2 + β3 Cl + β4 NO3 + β5 NH4 + β6 oPO4 + β7 PO4 + β8 Chla + τseason + τsize + τspeed + ε, ε ∼ N (0, σ 2 ) > algae.torgo <- knnImputation(algae[-c(62, 199),], k=10) > lm.a1 <- lm(a1 ~ .,data=algae.torgo[,1:12]) > summary(lm.a1) ... Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 42.942055 24.010879 1.788 0.07537 . seasonspring 3.726978 4.137741 0.901 0.36892 seasonsummer 0.747597 4.020711 0.186 0.85270 seasonwinter 3.692955 3.865391 0.955 0.34065 sizemedium 3.263728 3.802051 0.858 0.39179 sizesmall 9.682140 4.179971 2.316 0.02166 * ... Statistics 503, Spring 2013, ISU 20 20 a1 = β0 + β1 mxPH + β2 mnO2 + β3 Cl + β4 NO3 + β5 NH4 + β6 PO4 + β7 Chla + τseason + τsize + τspeed + ε, ε ∼ N (0, σ 2 ) =9.#9>(&39+%" a1 = β0 + β1 mxPH + β2 mnO2 + β3 Cl + β4 NO3 + β5 NH4 + β6 oPO4 + β7 PO4 + β8 Chla + τseason + τsize + τspeed + ε, ε ∼ N (0, σ 2 ) > algae.torgo <- knnImputation(algae[-c(62, 199),], k=10) > lm.a1 <- lm(a1 ~ .,data=algae.torgo[,1:12]) > summary(lm.a1) ... Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 42.94...
View Full Document

This note was uploaded on 02/06/2014 for the course STAT 503 taught by Professor Staff during the Fall '08 term at Iowa State.

Ask a homework question - tutors are online