5 5 15 10 cl 15 20 10 5 3 0 025 3 15 0 normal

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 0 0 0 5 15 count > > > > > > > > > > > > > > > > > > > > 10 Cl 15 20 10 5 0 -1 0 1 Cl Statistics 503, Spring 2013, ISU 2 9 9 300 0 20 200 40 100 Sample Quantiles Cl count 5"%$2/2# 400 Normal Q-Q Plot 60 -3 > qqnorm(algaet$Cl) > qqline(algaet$Cl) 20 400 0 10 15 300 10 Cl 3 Theoretical Quantiles 5 200 Sample Quantiles 100 5 -3 2.5 5 10 Cl 15 20 10 3 Theoretical Quantiles 1.5 0 15 Normal Q-Q1Plot -2 -1 0 2 0.5 20 0 Sample Quantiles log 0 15 Normal Q-Q1Plot -2 -1 0 2 -0.5 ^(0.5) 0 count # Transformations library(ggplot2) qplot(Cl, data=algae, geom="histogram") qqnorm(algae$Cl) qqline(algae$Cl) par(pty="s") qqnorm(algae$Cl) qqline(algae$Cl) qplot(Cl, data=algae, geom="histogram") algaet <- algae algaet$Cl <- sqrt(algae$Cl) qplot(Cl, data=algaet, geom="histogram") qqnorm(algaet$Cl) qqline(algaet$Cl) algaet$Cl <- log10(algae$Cl) qplot(Cl, data=algaet, geom="histogram") qqnorm(algaet$Cl) qqline(algaet$Cl) algaet$Cl <- algae$Cl^(0.25) qplot(Cl, data=algaet, geom="histogram") count > > > > > > > > > > > > > > > > > > > > 5 -3 0 -1 0 1 -1 0 1 2 3 Theoretical Quantiles 2 Cl -2 9 Statistics 503, Spring 2013, ISU 9 300 0 20 200 40 100 Sample Quantiles Cl count 5"%$2/2# 400 Normal Q-Q Plot 60 -3 > qqnorm(algaet$Cl) > qqline(algaet$Cl) 20 400 0 10 15 300 10 Cl 3 Theoretical Quantiles 5 200 Sample Quantiles 100 5 -3 Theoretical Quantiles 2.5 5 15 10 Cl 15 20 10 5 -3 0 ^(0.25) 3 1.5 0 Normal Q-Q1Plot -2 -1 0 2 0.5 20 0 Sample Quantiles log 0 15 Normal Q-Q1Plot -2 -1 0 2 -0.5 ^(0.5) 0 count # Transformations library(ggplot2) qplot(Cl, data=algae, geom="histogram") qqnorm(algae$Cl) qqline(algae$Cl) par(pty="s") qqnorm(algae$Cl) qqline(algae$Cl) qplot(Cl, data=algae, geom="histogram") algaet <- algae algaet$Cl <- sqrt(algae$Cl) qplot(Cl, data=algaet, geom="histogram") qqnorm(algaet$Cl) qqline(algaet$Cl) algaet$Cl <- log10(algae$Cl) qplot(Cl, data=algaet, geom="histogram") qqnorm(algaet$Cl) qqline(algaet$Cl) algaet$Cl <- algae$Cl^(0.25) qplot(Cl, data=algaet, geom="histogram") count > > > > > > > > > > > > > > > > > > > > -1 0 1 Cl Statistics 503, Spring 2013, ISU 2 -2 -1 0 1 2 3 Theoretical Quantiles 9 9 300 0 20 200 40 100 Sample Quantiles Cl count 5"%$2/2# 400 Normal Q-Q Plot 60 -3 20 15 10 400 3 Theoretical Quantiles 0 5 300 Cl Sample Quantiles 200 10 5 -3 2.5 10 15 Cl 20 10 3 Theoretical Quantiles 1.5 5 Normal Q-Q1Plot -2 -1 0 2 0.5 0 15 Sample Quantiles 20 0 5 -3 0 15 ^(0.25) > qqnorm(algaet$Cl) > qqline(algaet$Cl) 100 Normal Q-Q1Plot -2 -1 0 2 -0.5 log 0 15 count ^(0.5) 0 count # Transformations library(ggplot2) qplot(Cl, data=algae, geom="histogram") qqnorm(algae$Cl) qqline(algae$Cl) par(pty="s") qqnorm(algae$Cl) qqline(algae$Cl) qplot(Cl, data=algae, geom="histogram") algaet <- algae algaet$Cl <- sqrt(algae$Cl) qplot(Cl, data=algaet, geom="histogram") qqnorm(algaet$Cl) qqline(algaet$Cl) algaet$Cl <- log10(algae$Cl) qplot(Cl, data=algaet, geom="histogram") qqnorm(algaet$Cl) qqline(algaet$Cl) algaet$Cl <- algae$Cl^(0.25) qplot(Cl, data=algaet, geom="histogram") count > > > > > > > > > > > > > > > > > > > > -1 0 1 -1 0 1 2 3 Theoretical Quantiles 2 Cl -2 10 5 Statistics 503, Spring 2013, ISU 9 0 1 2 Cl 3 4 9 300 0 20 200 40 100 Sample Quantiles Cl count 5"%$2/2# 400 Normal Q-Q Plot 60 -3 15 20 10 10 400 0 count 300 Cl 3 Theoretical Quantiles 5 200 Sample Quantiles 100 5 -3 Theoretical Quantiles 2.5 10 15 Cl 15 20 -0.5 10 3 1.5 5 Normal Q-Q1Plot -2 -1 0 2 0.5 0 Sample Quantiles 20 0 5 Normal Q-Q Plot -3 0 15 4 1 2 Cl 10 5 -1 0 1 2 3 Theoretical Quantiles 3 0 -2 2 ^(0.25) -1 Sample Quantiles log 0 15 Normal Q-Q1Plot -2 -1 0 2 1 > qqnorm(algaet$Cl) > qqline(algaet$Cl) ^(0.5) 0 count # Transformations library(ggplot2) qplot(Cl, data=algae, geom="histogram") qqnorm(algae$Cl) qqline(algae$Cl) par(pty="s") qqnorm(algae$Cl) qqline(algae$Cl) qplot(Cl, data=algae, geom="histogram") algaet <- algae algaet$Cl <- sqrt(algae$Cl) qplot(Cl, data=algaet, geom="histogram") qqnorm(algaet$Cl) qqline(algaet$Cl) algaet$Cl <- log10(algae$Cl) qplot(Cl, data=algaet, geom="histogram") qqnorm(algaet$Cl) qqline(algaet$Cl) algaet$Cl <- algae$Cl^(0.25) qplot(Cl, data=algaet, geom="histogram") count > > > > > > > > > > > > > > > > > > > > Statistics 503, Spring 2013, ISU -3 0 1 2 Cl 3 4 -2 -1 0 1 2 Theoretical Quantiles 9 3 9 5"%$2/2# S&#($/+&'#)2+($ 'CJK '(LM =. OLB OKP +JLP JLP =7.# O+(" VM VDW:MXF VDW:MXF .+I" VDW:MXF VDW:XF VDW:MXF...
View Full Document

This note was uploaded on 02/06/2014 for the course STAT 503 taught by Professor Staff during the Fall '08 term at Iowa State.

Ask a homework question - tutors are online