MATH 251H Final Exam Version B Solutions

# 2 2 25 points verify gauss theorem f dv f ds v v for

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 4 sin 2  z2 3  4  1  9  9 M  ÞÞÞ  dV  Þ Þ Þ r 3 sin  cos  z dr d dz  r 40 2 20 22 00 0 0 /2 3 2 3 /2 2 5 2 sin 3  z M xz  ÞÞÞ y dV  Þ Þ Þ r 4 sin 2  cos  z dr d dz  r  32  1  9  48 50 5 5 3 20 32 00 0 0 M xz  48 1  16 y M 59 15 3 15. /2 2 (25 points) Verify Gauss’ Theorem   ÞÞÞ   F dV  ÞÞ F  dS V V  for the vector field F  2xy 2 , 2yx 2 , z x 2  y 2 above the cone z  2 x 2  y 2 and the solid below the plane z  2. Be careful with orientations. Use the following steps: First the Left Hand Side: a. Compute the divergence:   F  2y 2  2x 2  x 2  y 2  3x 2  3y 2  b. Express the divergence and the volume element in the appropriate coordinate system:   F  3r 2  dV  r dr d dz c. Find the limits of integration: 0  2 2 x2  y2 z 2 becomes 2r z 2 2r  2 when r  1 d. Compute the left hand side: 2 1 2 1 1  ÞÞÞ   F dV  Þ Þ Þ 3r 2 r dz dr d  2 Þ 3r 3 z 2 dr  6 Þ r 3 2 2r dr 0 V  12 Þ r 3 1 0 0 0 2r 4 r 4 dr  12 r 4 r5 5 1 0 2r  12 1 4 1 5 0  3 5 5 Second the Right Hand Side: The boundary surface consists of a cone C and a disk D with appropriate orientations. e. Complete the parametrization of the cone C:  R r,   r cos , r sin , 2r f. Compute the tangent vectors: r  cos , sin , 2 e   r sin , r cos , 0 e g. Compute the norma...
View Full Document

## This note was uploaded on 02/06/2014 for the course MATH 251H taught by Professor Philipb.yasskin during the Spring '11 term at Texas A&M.

Ask a homework question - tutors are online