singularity functions

# 5 lb fy 0 r1 r2 200015 30000 r2 65625 lb slide

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: LARITY FUNCTIONS (9.5 – 9.6) Singularity Functions ENES 220 ©Assakkaf Example 4 (cont’d) y 2000 lb/ft x 11 ft 4 ft 5 ft R1 + ∑M R2 2 Find the reactions: = 0; R1 (16 ) − 2000(15)(5 + 15 )=0 2 ∴ R1 = 23,437.5 lb + ↑ ∑ Fy = 0; R1 + R2 − 2000(15) = 30,000 ∴ R2 = 6,562.5 lb Slide No. 31 LECTURE 16. BEAMS: DEFORMATION BY SINGULARITY FUNCTIONS (9.5 – 9.6) Singularity Functions ENES 220 ©Assakkaf Example 4 (cont’d) A single expression for the bending moment can be obtained using the singularity functions: y 2000 lb/ft x 4 ft R1 11 ft 5 ft M (x ) = − R2 2 2000( x ) 2000 x − 15 + 2 2 2 + 23,437.5 x − 4 1 (23a) 16 Slide No. 32 LECTURE 16. BEAMS: DEFORMATION BY SINGULARITY FUNCTIONS (9.5 – 9.6) Singularity Functions ENES 220 ©Assakkaf Example 4 (cont’d) The elastic curve is found by integrating Eq. 23 twice 2000 x 2 2000 x − 15 EIy′′ = M (x ) = − + 2 2 2 + 23,437.5 x − 4 3 EIy′ = EIθ = −2000 23,437.5 x − 4 x 3 2000 x − 15 + + 6 6 2 x 4 2000 x − 15 EIy = −2000 + 24 24 4 + 1 2 + C1 (23b) 3 23,437.5 x − 4 + C1 x + C2 6 (23c) Sli...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online