Solution to HW4

# P v12 p v2 1 z1 2 2 z2 g 2 g g 2 g v1 2 pstag p 1 v12

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3 1 N 5-43 1 Noting that point 2 is a stagnation point and thus V2 = 0 and z1 =z2, the application of the Bernoulli equation between points 1 and 2 gives P V12 P V2 1 z1 2 2 z2 g 2 g g 2 g V12 P2 P 1 g 2g V12 P2 P g (hpitot R ) g (hpiezo R ) g (hpitot hpiezo ) 1 hpitot hpiezo g g g 2g V1 2 g (hpitot hpiezo ) 2(9.81 m/s 2 )[(0.35 0.20) m] 1.72 m/s 5-44 P V12 P V2 1 z1 2 2 z2 g 2 g g 2 g z1 V22 2g 2 2 D D V AorificeV 2 2 gz dV Vdt 4 4 2 2 D2 D D 2 gz dt 0 dz dt 0 4 4 D2 tf dt t 0 2 D0 D2 2g zf z 1 / 2 z z1 dz tf - V2 2 gz1 2 gz dt dV Atank (dz ) dz 2 zf 1 2 D0 z2 D2 2 g 1 2 (b) The tank empties completely: 4 D0 1 1 dz z 2 dz 2 gz D 2 2g z1 2g 2 2 D0 D2 zi z f tf zi = H and zf = H/2: (a) The tank empties halfway: 2 D0 2 D0 D2 2z 2z f i g g 2H H g g 2 D0 D2 tf zi = H and zf = 0: 2 D0 D2 2H g 5-48 (a) P V12 P V2 1 z1 2 2 z2 g 2 g g 2 g z1 2 m out D0 V out AorificeV 2 4 V22 2g V2 2 gz1 1 2 gz z 2g 4m out D 2 0 2 Setting z = hmax and m out m in (the incoming flow rate) gives the desired relation for the maximum height the water will reach in the tank, hmax 1 2g 4min D 2 0 2 (b) dm out m out dt 2 D0 2 gz dt ; dm tank Atank dz 4 dm tank min dt m out dt 2 DT 4 dz 2 gz dt 2 D0 dz min 4 4 2 DT Separating the variables, and integrating it from z = 0 at t = 0 to z = z at time t = t gives 1 4 min 1 2 2 DT dz 2 1 D0 4 2 gz dt z z 0 1 4 min 2 DT dz 2 1 D0 4 2 1 1 D 2 2 gz m ln min 4 D0 2 gz in 0 4 min 2g ) 2 2 DT 2 ( 1 D0 4 2 2 gz t t dt t t 0 5-49 P V12 P V2 1 z1 2 2 z2 g 2 g g 2 g P P2 1 P1 w g ( s h) P2 w gs Hg gh w (V 22 V12 ) 2 ( Hg w ) gh w (V22 V12 ) 2 P1 P2 ( Hg w ) gh h w (V 22 V12 ) V 22 V12 2 g ( Hg w ) 2 g ( Hg / w 1) 0.13368 ft 3 1 gal/s V V 1.53 ft/s V1 2 A1 D1 / 4 (4/12 ft) 2 / 4 1 gal 0.13368 ft 3 1 gal/s V V 6.13 ft/s V2 2 A2 D 2 / 4 (2/12 ft) 2 / 4 1 gal (6.13...
View Full Document

## This document was uploaded on 02/05/2014.

Ask a homework question - tutors are online