{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

chap11

# Withpositivecovariancethevarianceofthedifferenceswillb

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: mple mean and variance of the differences can be calculated as: d = x − y and 2 sd = s 2 + s 2 − 2 s xy x y Note the role of the covariance term in the variance calculation. With positive covariance, the variance of the differences will be reduced compared to using independent samples. 2 Chapter 11 For a comparison of the two population means, for some value a, test the null hypothesis: H0 : μ X − μ Y = a against a two‐sided alternative. The test statistic is: t= d−a sd n With the assumption of normal population distributions for the two sample means, the test statistic can be compared with a t‐distribution with (n–1) degrees of freedom. An interesting application is testing for equal population means. That is, a = 0 and the null hypothesis is: H0 : μ X − μ Y = 0 For this test, the test statistic is: 3 t= d sd n Chapter 11 Choose a significance level α (the probability of a Type I error). When testing against a two‐sided alternative, a decision rule can be set by one of three equivalent methods. (1) Use the Appendix Table of the t‐distribution to find a critical value t c that satisfies: P(t ( n − 1 ) > t c ) = α 2 Reject the null hypothesis if: t > tc For α = 0.05 (a 5% significance level), the graph below shows the critical value and the rejection region. PDF...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern