{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

202hw21_soln

# 202hw21_soln - '1’ P PROBLEM 7.30 i l A I...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: '1’ P PROBLEM 7.30 i, l , A I. ' ‘h'.’_*""'_' "‘7 9' .;T,| I; For the beam and loading shown, (a) draw the shear and bending-moment —; )l diagrams, (b) determine the maximum absolute values of the shear and ‘4—(1 «- u —>\ bending moment. I,-—————> SOLUTION FBD Beam: —~ )ZFt = 0: x = 0, by symmetry Ay = By = P Tr)“ l2Fy=0: P—V=O x A. P K V — P ’“ Qw,=0: M—xP=0 M = Px p l213,=0; P—P—V=0 M £1 K V = 0 ,4 5 v {EMA/=0: M—xP+(x~a)P=0 A M = Pa Along CD: l2}; =0: P—P—P—V=0 E E H V = —P at L-u. 5" x L (XML=O: M—xP+(x—a)P f X, +(x ~ L + a)P = 0 M = P(L — x) Note: Symmetry in M diag. follows symmetry of FBD (17) mm“ = P along AB and CD { lMme = Pa along BC4 PROBLEM 7.31 For the beam and loading shown, (a) draw the shear and bending-moment I B diagrams, ([7) determine the maximum absolute values of the shear and bending moment. SOLUTION h); FBD Section: A ’10 Z I a Q, 24,1: T213}: —V—%x[w0%)=0 a, M I | J— ) (a) I I x ’3 V = ~lﬁxz v «\\ V 2 L 1 \ *m m V(L) —le a 0 | 2 M \ ' \\ _ ' l _ l x _ \ JULL CEMJ—O. M+§x|:§x[w02]]— _ _ 1mg 6 L M(L) = — éwoLz (b) 1 = E M’OL at B ‘ 1 2 t B 4 | ‘mﬂx — g WOL a PROBLEM 7.37 _ _';. _ I ' For the beam and loading shown, (a) draw the shear and bending—moment C1 .1. ‘3‘" diagrams, (b) determine the maximum absolute values of the shear and r 1.4 111.1 A: L 1 Lx bending moment. 1.6 111—>+<*l 111 SOLUTION (a) FBD Beam: Q EMA = 0: —(1.3 m)[(1.8 kN/m)(2.6 m)] — (1.6 m)(4 kN) + (4 m)B = 0 AIM/m 13:3.121 kNT 4,, — (1.8 kN/m)(2.6 m) — 4 kN + 3.121 kN = 0 Ay = 5.559 kN I 575317 Along AC: A fAM/M 1.677 I 1 V II! I) 5. (w) 132/ ‘ x ' 17M V .— '3,lU lZF =0; 5.5591d\I—(1.8kN/m)x—V=0 y 45,57 V = 5.559 kN — (1.8 kN/m)x 51.37 (' 2M, = 0: M + %[(1.8 km)x] — x(5.559 kN) = 0 \ (MM; “:0” M = (5.559 kN)x — (0.9 kN/m)x2 Along CD: "MW" (I.le 3 £1- ~-—~—--——— —— K /16M l ‘1/ 5755‘? M yxw A, 94—» A 2F. =0: 5.559kN—x(1.8kN/m)—4kN—V=0 )’ V = (1.559 kN) * (1.8 kN/m)x Q EMK = 0; M + (x — 1.6 m)(4 kN) + %[(1.8 kN/m)x] — x(5.559 kN) = 0 M = 6.4 kN-m+ (1,559 kN)x — (0.9 kN/m)x2 __l Along DB: x; 3.121llN Tsz=0: V+3.121kN=0 V=—3.121kN {XML = 0: —M + xl(3.121kN) = 0 M = (3.121 kN)xl b ( ) [Vimax = 5.56 kN atA 4 IMlm = 6.59 kN-m at C4 PROBLEM 7.72 For the beam and loading shown, (a) draw the shear and bending—moment diagrams, (b) determine the location and magnitude of the maximum bending moment. 1_ _l SOLUTION (a) ( EMA = 0: (3 m) By — (2.1 m)(2.5 kN/m)(4.2 m) = 0 B}, = 7.35 kN l at SF}, = 0: A}, — (2.5 kN/m)(4.2 m) + 7.35 kN = o A}, = 3.15 kN I Shear Diag: V has slope gig = —2.5 kN/m throughout, and jumps at A and B equal to x the forces there. V = 3.15 kN — (2.5 kN/m)(3 m) = —4.35 V =~4.35kN+7.35kN=3kN VC = 3 kN — (2.5 kN/m)(l.2 m) = 0 Note, V = 0 where 3.15 kN — (2.5 kN/m)x = 0, x =1.26m Moment Diag: Mfr dM AtA, M = 0 and 71x— : 3.15 RM The slope decreases to zero at {Ia/Z“) x = 1.26 m and to ~4.35 kN at B, jumps to 3.0 kN and decreases to 0 at C. '//f 1 MD = E(3.15 kN)(1.26 m) = 1.9845 kN-m MB = 1.9845 kN-m — %(4.35 kN)(3 m —1.26 m) = —1.80 kN»m MC = —1.80 kN-m + %(3 kN)(l.2 m) = 0 (1)) From the diagrams, lVlmax = 4.35 kN atB (Mlm = 1.985 kN atD (1.26 m from A) 4 ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 5

202hw21_soln - '1’ P PROBLEM 7.30 i l A I...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online