fluidmech

A dr 2 x r where a is a constant of integration

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: plifying and ignoring the product of two small quantities we have the following result. δp τ dτ du τ =µ for Newtonian fluids. =+ δx r dr dy du If y is measured from the inside of the pipe then r = -y and dy = - dr so τ = − µ dr 2 δp µ du du =− −µ 2 δx r dr dr 2 1 du d u 1 δp + 2 =− µ δx r dr dr du rd 2 u r δp + =− 2 µ δx dr dr ⎛ du ⎞ d⎜ r ⎟ du rd 2 u dr ⎠ Using partial differentiation to differentiate ⎝ yields the result + dr dr dr 2 ⎛ du ⎞ d⎜ r ⎟ r δp dr ⎠ hence ⎝ =− µ δx dr r 2 δp du Integrating we get r =− +A dr 2 µ δx du r δp A =− + ...........(A) dr 2 µ δx r where A is a constant of integration. © D.J.DUNN 18 Integrating again we get r 2 δp + A ln r + B................( B) 4 µ δx where B is another constant of integration. Equations (A) and (B) may be used to derive Poiseuille's equation or it may be used to solve flow through an annular passage. u=− 2.10.1 PIPE At the middle r=0 so from equation (A) it follows that A=0 At the wall, u=0 and r=R. Putting this into equation B yields R 2 δp 0=− + A ln R + B where A = 0 4 µ δx B= R 2 δp 4 µ δx u=− r 2 δp R 2 δp 1 δp 2 R − r 2 and this isPoiseuille' s equation again. + = 4 µ δx 4 µ δx 4 µ δx { } 2.10.2 ANNULUS Fig.2.11 r 2 δp + A ln r + B 4 µ δx The boundary conditions are u = 0 at r = R i and r = R o . u=− Ro2 δp + A ln Ro + B...........................(C ) 0=− 4 µ δx Ri2 δp + A ln Ri + B .........................(D) 0=− 4 µ δx subtract D from C 1 δp − Ro2 + Ri2 + A{ln Ro − ln Ri } 0= 4 µ δx { 0= } ⎧R ⎫ 1 δp 2 Ri − R02 + A ln ⎨ o ⎬ 4 µ δx ⎩ Ri ⎭ { } © D.J.DUNN 19 A= { 1 δp Ro2 − Ri2 4 µ δx ⎧R ⎫ ln ⎨ o ⎬ ⎩ Ri ⎭ } This may be substituted back into equation D. The same result will be obtained from C. { } Ri2 δp 1 δp Ro2 − Ri2 + 0=− ln Ri + B 4 µ δx 4 µ δ x ⎧ Ro ⎫ ln ⎨ ⎬ ⎩ Ri ⎭ ⎡ ⎧ ⎢ ⎪ 1 δp ⎢ 2 ⎪ Ro2 − Ri2 B= Ri − ⎨ 4 µ δx ⎢ ⎪ ln ⎧ Ro ⎫ ⎢ ⎪ ⎨ Ri ⎬ ⎢ ⎩⎩⎭ ⎣ { ⎤ ⎫ ⎥ ⎪ ⎪ ⎥ ⎬ ln Ri ⎥ ⎪ ⎥ ⎪ ⎥ ⎭ ⎦ } This is put into equation B ⎡ ⎧ ⎢ ⎪ - r 2 δp 1 δp R − R 1 δp ⎢ 2 ⎪ Ro2 − Ri2 + ln r + Ri − ⎨ u= 4 µ δx 4 µ δx 4 µ δx ⎢ ⎧ Ro ⎫ ⎪ ln ⎧ Ro ⎫ ⎢ ln ⎨ ⎬ ⎪ ⎨ Ri ⎬ ⎢ ⎩ Ri ⎭ ⎩⎩⎭ ⎣ ⎤ ⎡ ⎥ ⎢ 2 2 2 2 Ro − Ri 1 δp ⎢ 2 Ro − Ri 2 −r + u= ln r + Ri − ln Ri ⎥ ⎥ ⎢ 4 µ δx ⎧R ⎫ ⎧R ⎫ ⎥ ⎢ ln ⎨ o ⎬ ln ⎨ o ⎬ ⎥ ⎢ ⎩ Ri ⎭ ⎩ Ri ⎭ ⎦ ⎣ { { 2 o 2 i } } { { ⎤ ⎫ ⎥ ⎪ ⎪ ⎥ ⎬ ln Ri ⎥ ⎪ ⎥ ⎪ ⎥ ⎭ } } ⎤ ⎡ ⎥ ⎢2 r 1 δp ⎢ Ro − Ri2 2 2⎥ u= ln + Ri − r ⎥ Ri 4 µ δ x ⎢ ⎧ Ro ⎫ ⎥ ⎢ ln ⎨ ⎬ ⎥ ⎢ ⎩ Ri ⎭ ⎦ ⎣ { } For given values the velocity distribution is similar to this. Fig. 2.12 © D.J.DUNN 20 ASSIGNMENT 2 1. Oil flows in a pipe 80 mm bore diameter with a mean velocity of 0.4 m/s. The density is 890 kg/m3 and the viscosity is 0.075...
View Full Document

This document was uploaded on 02/07/2014.

Ask a homework question - tutors are online