mont4e_sm_ch05_sec04

# Mont4e_sm_ch05_sec04

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ;Z< ⎟ 0.00031 0.00031 ⎠ ⎝ = P(−1.5 < Z < 1.5) = P( Z < 1.5) − P( Z < −1.5) = 0.8664 Probability that Y is within specification limits is 0.23034 − 0.23 ⎞ ⎛ 0.22966 − 0.23 P(0.22966 < X < 0.23034) = P⎜ <Z< ⎟ 0.00017 ⎠ ⎝ 0.00017 = P(−2 < Z < 2) = P( Z < 2) − P( Z < −2) = 0.9545 Probability that a randomly selected lamp is within specification limits is (0.8664)(0.9594) = 0.8270 5-50 a) By completing the square in the numerator of the exponent of the bivariate normal PDF, the joint PDF can be written as 1 fY|X =x 2 f XY ( x , y ) 2πσ x σ y 1 − ρ = = f X ( x) e 2 ⎡1⎡ ⎛ x−μ x ⎤ σ ⎢ ( y − ( μ Y + ρ Y ( x − μ x )) ⎥ + (1− ρ 2 ) ⎜ ⎜σ 2⎢ ⎢σ Y ⎣ σX x ⎦ ⎝ ⎣ − 2 2 (1− ρ ) 1 2π σ x Also, fx(x) = 1 2π σ x e ⎡ x−μx ⎤ ⎢ ⎥ σx ⎦ −⎣ 2 e ⎡ x−μ x ⎤ ⎢ ⎥ σx ⎦ −⎣ 2 2 By definition, 5-34 2 ⎞ ⎟ ⎟ ⎠ 2 ⎤ ⎥ ⎥ ⎦ 1 fY | X = x 2 f ( x, y ) 2πσ x σ y 1 − ρ = XY = f X ( x) e 2 ⎡1⎡ ⎛ x −μ x ⎤ σY ⎢ ( x −μ x )) ⎥ + (1−ρ 2 )⎜ ⎢ ( y − (μ Y + ρ ⎜σ 2 ⎢ σY ⎣ σX ⎦ ⎝x −⎣ 2 2(1− ρ ) 2π σ x 1 2π σ y 1 − ρ2 e 2⎤ ⎥ ⎥ ⎦ 2 1 = ⎞ ⎟ ⎟ ⎠ ⎤ σ 1⎡ ( y − (μY + ρ Y ( x −μ x )) ⎥ 2⎢ σX σY ⎣ ⎦ − 2(1−ρ 2 ) e ⎡ x −μ x ⎤ ⎥ ⎢ σx ⎦ −⎣ 2 2(1−ρ ) 2 Now fY|X=x is in the form of a normal distribution. b) E(Y|X=x) = μ y + ρ σy σx ( x − μ x ) . This answer can be seen from part a). Since the PDF is in the form of a normal distribution, then the mean can be obtained from the exponent. c) V(Y|X=x) = σ2 (1 − ρ2 ) . This answer can be seen from part a). Since the PDF is in the form of a y normal distribution, then the variance can be obtained from the exponent. 5-51 ⎡ ( x − μ X ) 2 ( y − μY ) 2 ⎤ ⎡ ⎤ −1⎢ + 2 2 σ Y 2 ⎥ ⎥ dxdy = ⎦ 1 f XY ( x, y )dxdy = ∫ ∫ ⎢ 2πσ X σ Y e ⎣ σ X ∫∫ ⎥ − ∞− ∞ − ∞− ∞ ⎢ ⎣ ⎦ ∞∞ ⎡ ∫⎢ −∞⎢ ⎣ ∞∞ ∞ 1 e 2πσ X ⎡ ( x−μ X )2 ⎤ −1⎢ 2 2⎥ X ⎣ ⎦ σ ⎤ ∞⎡ ⎥ dx ∫ ⎢ ⎥ −∞⎢ ⎦ ⎣ 1 e 2πσ...
View Full Document

## This document was uploaded on 02/09/2014.

Ask a homework question - tutors are online