ENAS 151 Useful Formulas Midterm 2

# Y y0 fz x0 y0 z0 z z0 0 3 2 d fxx x0

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (x0 , y0) · u Fx (x0 , y0, z0 )(x − x0 ) + Fy (x0 , y0, z0 )(y − y0 ) + Fz (x0 , y0, z0 )(z − z0 ) = 0 3 2 D = fxx (x0 , y0)fyy (x0 , y0 ) − fxy (x0 , y0 ) ∇f (x0 , y0) = λ∇g (x0, y0) g2 (x) b f (x, y )dA = R a h 2 (y ) d f (x, y )dA = R f (x, y ) dy dx g1 (x) f (x, y ) dx dy h 1 (y ) c 1 f (x, y ) dA A R where A is the area of the rectangular region R faverage = r 2 (θ ) β f (r, θ )dA = R ∂r ∂u ∂r ∂u n= R R ∂r ∂v ∂r ∂v × × ∂r ∂r × ∂u ∂v S= ∂z ∂x 2 b d c l G R θ2 θ1 k g2 (x,y ) f (x, y, z )dV = f (r, θ, z )dV = + 1 dA f (x, y, z )dz dy dx a G dA 2 ∂z + ∂y f (x, y, z )dV = G f (r, θ ) r dr dθ r 1 (θ ) α r 2 (θ ) r 1 (θ ) 4 f (x, y, z ) dz dA g1 (x,y ) g2 (r,θ ) g1 (r,θ ) f (r, θ, z ) r dz dr dθ x = r cos θ, y = r sin θ, z = z f (ρ, θ, φ)ρ2sin φ dρ dφ dθ f (ρ, θ, φ)dV = G x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ 5...
View Full Document

## This note was uploaded on 02/11/2014 for the course ENAS 151 taught by Professor Mitchellsmooke during the Fall '08 term at Yale.

Ask a homework question - tutors are online