Isye 2027

# 23 conditional probabilities

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: . . . . . 2.3 Conditional probabilities . . . . . . . . . . . . . . . . . . . . . . 2.4 Independence and the binomial distribution . . . . . . . . . . . 2.4.1 Mutually independent events . . . . . . . . . . . . . . . 2.4.2 Independent random variables (of discrete-type) . . . . 2.4.3 Bernoulli distribution . . . . . . . . . . . . . . . . . . . 2.4.4 Binomial distribution . . . . . . . . . . . . . . . . . . . 2.5 Geometric distribution . . . . . . . . . . . . . . . . . . . . . . . 2.6 Bernoulli process and the negative binomial distribution . . . . 2.7 The Poisson distribution–a limit of Bernoulli distributions . . . 2.8 Maximum likelihood parameter estimation . . . . . . . . . . . . 2.9 Markov and Chebychev inequalities and conﬁdence intervals . . 2.10 The law of total probability, and Bayes formula . . . . . . . . . 2.11 Binary hypothesis testing with discrete-type observations . . . 2.11.1 Maximum likelihood (ML) decision rule . . . . . . . . . 2.11.2 Maximum a posteriori probability (MAP) decision rule . 2...
View Full Document

## This note was uploaded on 02/09/2014 for the course ISYE 2027 taught by Professor Zahrn during the Spring '08 term at Georgia Tech.

Ask a homework question - tutors are online