# Thus e y 2 x u u2 1 2 therefore e y 2 x

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: )2 with probability one, and the inequality is strict whenever L∗ &lt; 0. Example 4.10.2 Suppose (X, Y ) is uniformly distributed over the triangular region with vertices at (−1, 0), (0, 1), and (1, 1), shown in Figure 4.24. (a) Find and sketch the minimum MSE estimator v 1 u !1 0 1 Figure 4.24: Support of fX,Y . of Y given X = u, g ∗ (u) = E [Y |X = u], for all u such that it is well deﬁned, and ﬁnd the resulting minimum MSE for using g ∗ (X ) = E [Y |X ] to estimate Y. (b) Find and sketch the function L∗ (u) used for minimum MSE linear estimation of Y from X , and ﬁnd the resulting MSE for using L∗ (X ) to estimate Y. 166 CHAPTER 4. JOINTLY DISTRIBUTED RANDOM VARIABLES Solution: (a) We will ﬁrst solve this by going through all the usual steps, ﬁrst ﬁnding fX,Y and fX in order to identify the ratio of the two, which is fY |X (v |u). Then E [Y |X = u] is the mean of the conditional density fY |X (v |u) for u ﬁxed. It will then be explained how the answer could be deduced by inspection. The support of fX,Y is the triangular region, which has area 0.5. (Use the formula one half base...
View Full Document

## This note was uploaded on 02/09/2014 for the course ISYE 2027 taught by Professor Zahrn during the Spring '08 term at Georgia Institute of Technology.

Ask a homework question - tutors are online